Skip to content

Latest commit

 

History

History

1091.Shortest-Path-in-Binary-Matrix

题目

In an N by N square grid, each cell is either empty (0) or blocked (1).

clear path from top-left to bottom-right has length k if and only if it is composed of cells C_1, C_2, ..., C_k such that:

  • Adjacent cells C_i and C_{i+1} are connected 8-directionally (ie., they are different and share an edge or corner)
  • C_1 is at location (0, 0) (ie. has value grid[0][0])
  • C_k is at location (N-1, N-1) (ie. has value grid[N-1][N-1])
  • If C_i is located at (r, c), then grid[r][c] is empty (ie. grid[r][c] == 0).

Return the length of the shortest such clear path from top-left to bottom-right.  If such a path does not exist, return -1.

Example 1:

Input: [[0,1],[1,0]] Output: 2 

https://assets.leetcode.com/uploads/2019/08/04/example1_1.png

https://assets.leetcode.com/uploads/2019/08/04/example1_2.png

Example 2:

Input: [[0,0,0],[1,1,0],[1,1,0]] Output: 4 

https://assets.leetcode.com/uploads/2019/08/04/example2_1.png

https://assets.leetcode.com/uploads/2019/08/04/example2_2.png

Note:

  1. 1 <= grid.length == grid[0].length <= 100
  2. grid[r][c] is 0 or 1

题目大意

在一个 N × N 的方形网格中,每个单元格有两种状态:空(0)或者阻塞(1)。一条从左上角到右下角、长度为 k 的畅通路径,由满足下述条件的单元格 C_1, C_2, ..., C_k 组成:

  • 相邻单元格 C_i 和 C_{i+1} 在八个方向之一上连通(此时,C_i 和 C_{i+1} 不同且共享边或角)
  • C_1 位于 (0, 0)(即,值为 grid[0][0])
  • C_k 位于 (N-1, N-1)(即,值为 grid[N-1][N-1])
  • 如果 C_i 位于 (r, c),则 grid[r][c] 为空(即,grid[r][c] == 0)

返回这条从左上角到右下角的最短畅通路径的长度。如果不存在这样的路径,返回 -1 。

解题思路

  • 这一题是简单的找最短路径。利用 BFS 从左上角逐步扩展到右下角,便可以很容易求解。注意每轮扩展需要考虑 8 个方向。

代码

vardir= [][]int{ {-1, -1}, {-1, 0}, {-1, 1}, {0, 1}, {0, -1}, {1, -1}, {1, 0}, {1, 1}, } funcshortestPathBinaryMatrix(grid [][]int) int { visited:=make([][]bool, 0) forrangemake([]int, len(grid)) { visited=append(visited, make([]bool, len(grid[0]))) } dis:=make([][]int, 0) forrangemake([]int, len(grid)) { dis=append(dis, make([]int, len(grid[0]))) } ifgrid[0][0] ==1 { return-1 } iflen(grid) ==1&&len(grid[0]) ==1 { return1 } queue:= []int{0} visited[0][0], dis[0][0] =true, 1forlen(queue) >0 { cur:=queue[0] queue=queue[1:] curx, cury:=cur/len(grid[0]), cur%len(grid[0]) ford:=0; d<8; d++ { nextx:=curx+dir[d][0] nexty:=cury+dir[d][1] ifisInBoard(grid, nextx, nexty) &&!visited[nextx][nexty] &&grid[nextx][nexty] ==0 { queue=append(queue, nextx*len(grid[0])+nexty) visited[nextx][nexty] =truedis[nextx][nexty] =dis[curx][cury] +1ifnextx==len(grid)-1&&nexty==len(grid[0])-1 { returndis[nextx][nexty] } } } } return-1 } funcisInBoard(board [][]int, x, yint) bool { returnx>=0&&x<len(board) &&y>=0&&y<len(board[0]) }
close