In an N by N square grid, each cell is either empty (0) or blocked (1).
A clear path from top-left to bottom-right has length k
if and only if it is composed of cells C_1, C_2, ..., C_k
such that:
- Adjacent cells
C_i
andC_{i+1}
are connected 8-directionally (ie., they are different and share an edge or corner) C_1
is at location(0, 0)
(ie. has valuegrid[0][0]
)C_k
is at location(N-1, N-1)
(ie. has valuegrid[N-1][N-1]
)- If
C_i
is located at(r, c)
, thengrid[r][c]
is empty (ie.grid[r][c] == 0
).
Return the length of the shortest such clear path from top-left to bottom-right. If such a path does not exist, return -1.
Example 1:
Input: [[0,1],[1,0]] Output: 2
Example 2:
Input: [[0,0,0],[1,1,0],[1,1,0]] Output: 4
Note:
1 <= grid.length == grid[0].length <= 100
grid[r][c]
is0
or1
在一个 N × N 的方形网格中,每个单元格有两种状态:空(0)或者阻塞(1)。一条从左上角到右下角、长度为 k 的畅通路径,由满足下述条件的单元格 C_1, C_2, ..., C_k 组成:
- 相邻单元格 C_i 和 C_{i+1} 在八个方向之一上连通(此时,C_i 和 C_{i+1} 不同且共享边或角)
- C_1 位于 (0, 0)(即,值为 grid[0][0])
- C_k 位于 (N-1, N-1)(即,值为 grid[N-1][N-1])
- 如果 C_i 位于 (r, c),则 grid[r][c] 为空(即,grid[r][c] == 0)
返回这条从左上角到右下角的最短畅通路径的长度。如果不存在这样的路径,返回 -1 。
- 这一题是简单的找最短路径。利用 BFS 从左上角逐步扩展到右下角,便可以很容易求解。注意每轮扩展需要考虑 8 个方向。
vardir= [][]int{ {-1, -1}, {-1, 0}, {-1, 1}, {0, 1}, {0, -1}, {1, -1}, {1, 0}, {1, 1}, } funcshortestPathBinaryMatrix(grid [][]int) int { visited:=make([][]bool, 0) forrangemake([]int, len(grid)) { visited=append(visited, make([]bool, len(grid[0]))) } dis:=make([][]int, 0) forrangemake([]int, len(grid)) { dis=append(dis, make([]int, len(grid[0]))) } ifgrid[0][0] ==1 { return-1 } iflen(grid) ==1&&len(grid[0]) ==1 { return1 } queue:= []int{0} visited[0][0], dis[0][0] =true, 1forlen(queue) >0 { cur:=queue[0] queue=queue[1:] curx, cury:=cur/len(grid[0]), cur%len(grid[0]) ford:=0; d<8; d++ { nextx:=curx+dir[d][0] nexty:=cury+dir[d][1] ifisInBoard(grid, nextx, nexty) &&!visited[nextx][nexty] &&grid[nextx][nexty] ==0 { queue=append(queue, nextx*len(grid[0])+nexty) visited[nextx][nexty] =truedis[nextx][nexty] =dis[curx][cury] +1ifnextx==len(grid)-1&&nexty==len(grid[0])-1 { returndis[nextx][nexty] } } } } return-1 } funcisInBoard(board [][]int, x, yint) bool { returnx>=0&&x<len(board) &&y>=0&&y<len(board[0]) }