On a N * N
grid, we place some 1 * 1 * 1
cubes.
Each value v = grid[i][j]
represents a tower of v
cubes placed on top of grid cell (i, j)
.
Return the total surface area of the resulting shapes.
Example 1:
Input: [[2]] Output: 10
Example 2:
Input: [[1,2],[3,4]] Output: 34
Example 3:
Input: [[1,0],[0,2]] Output: 16
Example 4:
Input: [[1,1,1],[1,0,1],[1,1,1]] Output: 32
Example 5:
Input: [[2,2,2],[2,1,2],[2,2,2]] Output: 46
Note:
1 <= N <= 50
0 <= grid[i][j] <= 50
在 N * N 的网格上,我们放置一些 1 * 1 * 1 的立方体。每个值 v = grid[i][j] 表示 v 个正方体叠放在对应单元格 (i, j) 上。请你返回最终形体的表面积。
- 给定一个网格数组,数组里面装的是立方体叠放在所在的单元格,求最终这些叠放的立方体的表面积。
- 简单题。按照题目意思,找到叠放时,重叠的面,然后用总表面积减去这些重叠的面积即为最终答案。
package leetcode funcsurfaceArea(grid [][]int) int { area:=0fori:=0; i<len(grid); i++ { forj:=0; j<len(grid[0]); j++ { ifgrid[i][j] ==0 { continue } area+=grid[i][j]*4+2// upifi>0 { m:=min(grid[i][j], grid[i-1][j]) area-=m } // downifi<len(grid)-1 { m:=min(grid[i][j], grid[i+1][j]) area-=m } // leftifj>0 { m:=min(grid[i][j], grid[i][j-1]) area-=m } // rightifj<len(grid[i])-1 { m:=min(grid[i][j], grid[i][j+1]) area-=m } } } returnarea } funcmin(a, bint) int { ifa>b { returnb } returna }