Given the radius and x-y positions of the center of a circle, write a function randPoint
which generates a uniform random point in the circle.
Note:
- input and output values are in floating-point.
- radius and x-y position of the center of the circle is passed into the class constructor.
- a point on the circumference of the circle is considered to be in the circle.
randPoint
returns a size 2 array containing x-position and y-position of the random point, in that order.
Example 1:
Input: ["Solution","randPoint","randPoint","randPoint"] [[1,0,0],[],[],[]] Output: [null,[-0.72939,-0.65505],[-0.78502,-0.28626],[-0.83119,-0.19803]]
Example 2:
Input: ["Solution","randPoint","randPoint","randPoint"] [[10,5,-7.5],[],[],[]] Output: [null,[11.52438,-8.33273],[2.46992,-16.21705],[11.13430,-12.42337]]
Explanation of Input Syntax:
The input is two lists: the subroutines called and their arguments. Solution
's constructor has three arguments, the radius, x-position of the center, and y-position of the center of the circle. randPoint
has no arguments. Arguments are always wrapped with a list, even if there aren't any.
给定圆的半径和圆心的 x、y 坐标,写一个在圆中产生均匀随机点的函数 randPoint 。
说明:
- 输入值和输出值都将是浮点数。
- 圆的半径和圆心的 x、y 坐标将作为参数传递给类的构造函数。
- 圆周上的点也认为是在圆中。
- randPoint 返回一个包含随机点的x坐标和y坐标的大小为2的数组。
- 随机产生一个圆内的点,这个点一定满足定义
(x-a)^2+(y-b)^2 ≤ R^2
,其中(a,b)
是圆的圆心坐标,R
是半径。 - 先假设圆心坐标在 (0,0),这样方便计算,最终输出坐标的时候整体加上圆心的偏移量即可。
rand.Float64()
产生一个[0.0,1.0)
区间的浮点数。-R ≤ 2 * R * rand() - R < R
,利用随机产生坐标点的横纵坐标(x,y)
与半径 R 的关系,如果x^2 + y^2 ≤ R^2
,那么说明产生的点在圆内。最终输出的时候要记得加上圆心坐标的偏移值。
package leetcode import ( "math""math/rand""time" ) typeSolutionstruct { rfloat64xfloat64yfloat64 } funcConstructor(radiusfloat64, x_centerfloat64, y_centerfloat64) Solution { rand.Seed(time.Now().UnixNano()) returnSolution{radius, x_center, y_center} } func (this*Solution) RandPoint() []float64 { /* a := angle() r := this.r * math.Sqrt(rand.Float64()) x := r * math.Cos(a) + this.x y := r * math.Sin(a) + this.y return []float64{x, y}*/for { rx:=2*rand.Float64() -1.0ry:=2*rand.Float64() -1.0x:=this.r*rxy:=this.r*ryifx*x+y*y<=this.r*this.r { return []float64{x+this.x, y+this.y} } } } funcangle() float64 { returnrand.Float64() *2*math.Pi } /** * Your Solution object will be instantiated and called as such: * obj := Constructor(radius, x_center, y_center); * param_1 := obj.RandPoint(); */