Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l) there are such that A[i] + B[j] + C[k] + D[l] is zero.
To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.
Example 1:
Input: A= [ 1, 2] B= [-2,-1] C= [-1, 2] D= [ 0, 2] Output: 2Explanation: Thetwotuplesare: 1. (0, 0, 0, 1) ->A[0] +B[0] +C[0] +D[1] =1+ (-2) + (-1) +2=02. (1, 1, 0, 0) ->A[1] +B[1] +C[0] +D[0] =2+ (-1) + (-1) +0=0
给出 4 个数组,计算这些数组中存在几对 i,j,k,l 可以使得 A[i] + B[j] + C[k] + D[l] = 0 。
这道题的数据量不大,0 ≤ N ≤ 500,但是如果使用暴力解法,四层循环,会超时。这道题的思路和第 1 题思路也类似,先可以将 2 个数组中的组合都存入 map 中。之后将剩下的 2 个数组进行 for 循环,找出和为 0 的组合。这样时间复杂度是 O(n^2)。当然也可以讲剩下的 2 个数组的组合也存入 map 中,不过最后在 2 个 map 中查找结果也是 O(n^2) 的时间复杂度。