- Notifications
You must be signed in to change notification settings - Fork 509
/
Copy pathlogger.py
169 lines (146 loc) · 6.17 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
importdatetime
importlogging
importtime
from .dist_utilimportget_dist_info, master_only
initialized_logger= {}
classMessageLogger():
"""Message logger for printing.
Args:
opt (dict): Config. It contains the following keys:
name (str): Exp name.
logger (dict): Contains 'print_freq' (str) for logger interval.
train (dict): Contains 'total_iter' (int) for total iters.
use_tb_logger (bool): Use tensorboard logger.
start_iter (int): Start iter. Default: 1.
tb_logger (obj:`tb_logger`): Tensorboard logger. Default: None.
"""
def__init__(self, opt, start_iter=1, tb_logger=None):
self.exp_name=opt['name']
self.interval=opt['logger']['print_freq']
self.start_iter=start_iter
self.max_iters=opt['train']['total_iter']
self.use_tb_logger=opt['logger']['use_tb_logger']
self.tb_logger=tb_logger
self.start_time=time.time()
self.logger=get_root_logger()
@master_only
def__call__(self, log_vars):
"""Format logging message.
Args:
log_vars (dict): It contains the following keys:
epoch (int): Epoch number.
iter (int): Current iter.
lrs (list): List for learning rates.
time (float): Iter time.
data_time (float): Data time for each iter.
"""
# epoch, iter, learning rates
epoch=log_vars.pop('epoch')
current_iter=log_vars.pop('iter')
lrs=log_vars.pop('lrs')
message= (f'[{self.exp_name[:5]}..][epoch:{epoch:3d}, 'f'iter:{current_iter:8,d}, lr:(')
forvinlrs:
message+=f'{v:.3e},'
message+=')] '
# time and estimated time
if'time'inlog_vars.keys():
iter_time=log_vars.pop('time')
data_time=log_vars.pop('data_time')
total_time=time.time() -self.start_time
time_sec_avg=total_time/ (current_iter-self.start_iter+1)
eta_sec=time_sec_avg* (self.max_iters-current_iter-1)
eta_str=str(datetime.timedelta(seconds=int(eta_sec)))
message+=f'[eta: {eta_str}, '
message+=f'time (data): {iter_time:.3f} ({data_time:.3f})] '
# other items, especially losses
fork, vinlog_vars.items():
message+=f'{k}: {v:.4e} '
# tensorboard logger
ifself.use_tb_logger:
# if k.startswith('l_'):
# self.tb_logger.add_scalar(f'losses/{k}', v, current_iter)
# else:
self.tb_logger.add_scalar(k, v, current_iter)
self.logger.info(message)
@master_only
definit_tb_logger(log_dir):
fromtorch.utils.tensorboardimportSummaryWriter
tb_logger=SummaryWriter(log_dir=log_dir)
returntb_logger
@master_only
definit_wandb_logger(opt):
"""We now only use wandb to sync tensorboard log."""
importwandb
logger=logging.getLogger('basicsr')
project=opt['logger']['wandb']['project']
resume_id=opt['logger']['wandb'].get('resume_id')
ifresume_id:
wandb_id=resume_id
resume='allow'
logger.warning(f'Resume wandb logger with id={wandb_id}.')
else:
wandb_id=wandb.util.generate_id()
resume='never'
wandb.init(id=wandb_id, resume=resume, name=opt['name'], config=opt, project=project, sync_tensorboard=True)
logger.info(f'Use wandb logger with id={wandb_id}; project={project}.')
defget_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=None):
"""Get the root logger.
The logger will be initialized if it has not been initialized. By default a
StreamHandler will be added. If `log_file` is specified, a FileHandler will
also be added.
Args:
logger_name (str): root logger name. Default: 'basicsr'.
log_file (str | None): The log filename. If specified, a FileHandler
will be added to the root logger.
log_level (int): The root logger level. Note that only the process of
rank 0 is affected, while other processes will set the level to
"Error" and be silent most of the time.
Returns:
logging.Logger: The root logger.
"""
logger=logging.getLogger(logger_name)
# if the logger has been initialized, just return it
iflogger_nameininitialized_logger:
returnlogger
format_str='%(asctime)s %(levelname)s: %(message)s'
stream_handler=logging.StreamHandler()
stream_handler.setFormatter(logging.Formatter(format_str))
logger.addHandler(stream_handler)
logger.propagate=False
rank, _=get_dist_info()
ifrank!=0:
logger.setLevel('ERROR')
eliflog_fileisnotNone:
logger.setLevel(log_level)
# add file handler
# file_handler = logging.FileHandler(log_file, 'w')
file_handler=logging.FileHandler(log_file, 'a') #Shangchen: keep the previous log
file_handler.setFormatter(logging.Formatter(format_str))
file_handler.setLevel(log_level)
logger.addHandler(file_handler)
initialized_logger[logger_name] =True
returnlogger
defget_env_info():
"""Get environment information.
Currently, only log the software version.
"""
importtorch
importtorchvision
frombasicsr.versionimport__version__
msg=r"""
____ _ _____ ____
/ __ ) ____ _ _____ (_)_____/ ___/ / __ \
/ __ |/ __ `// ___// // ___/\__ \ / /_/ /
/ /_/ // /_/ /(__ )/ // /__ ___/ // _, _/
/_____/ \__,_//____//_/ \___//____//_/ |_|
______ __ __ __ __
/ ____/____ ____ ____/ / / / __ __ _____ / /__ / /
/ / __ / __ \ / __ \ / __ / / / / / / // ___// //_/ / /
/ /_/ // /_/ // /_/ // /_/ / / /___/ /_/ // /__ / /< /_/
\____/ \____/ \____/ \____/ /_____/\____/ \___//_/|_| (_)
"""
msg+= ('\nVersion Information: '
f'\n\tBasicSR: {__version__}'
f'\n\tPyTorch: {torch.__version__}'
f'\n\tTorchVision: {torchvision.__version__}')
returnmsg