- Notifications
You must be signed in to change notification settings - Fork 509
/
Copy pathtrain.py
225 lines (189 loc) · 9.19 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
importargparse
importdatetime
importlogging
importmath
importcopy
importrandom
importtime
importtorch
fromosimportpathasosp
frombasicsr.dataimportbuild_dataloader, build_dataset
frombasicsr.data.data_samplerimportEnlargedSampler
frombasicsr.data.prefetch_dataloaderimportCPUPrefetcher, CUDAPrefetcher
frombasicsr.modelsimportbuild_model
frombasicsr.utilsimport (MessageLogger, check_resume, get_env_info, get_root_logger, init_tb_logger,
init_wandb_logger, make_exp_dirs, mkdir_and_rename, set_random_seed)
frombasicsr.utils.dist_utilimportget_dist_info, init_dist
frombasicsr.utils.optionsimportdict2str, parse
importwarnings
# ignore UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`.
warnings.filterwarnings("ignore", category=UserWarning)
defparse_options(root_path, is_train=True):
parser=argparse.ArgumentParser()
parser.add_argument('-opt', type=str, required=True, help='Path to option YAML file.')
parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none', help='job launcher')
parser.add_argument('--local-rank','--local_rank', type=int, default=0)
args=parser.parse_args()
opt=parse(args.opt, root_path, is_train=is_train)
# distributed settings
ifargs.launcher=='none':
opt['dist'] =False
print('Disable distributed.', flush=True)
else:
opt['dist'] =True
ifargs.launcher=='slurm'and'dist_params'inopt:
init_dist(args.launcher, **opt['dist_params'])
else:
init_dist(args.launcher)
opt['rank'], opt['world_size'] =get_dist_info()
# random seed
seed=opt.get('manual_seed')
ifseedisNone:
seed=random.randint(1, 10000)
opt['manual_seed'] =seed
set_random_seed(seed+opt['rank'])
returnopt
definit_loggers(opt):
log_file=osp.join(opt['path']['log'], f"train_{opt['name']}.log")
logger=get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
logger.info(get_env_info())
logger.info(dict2str(opt))
# initialize wandb logger before tensorboard logger to allow proper sync:
if (opt['logger'].get('wandb') isnotNone) and (opt['logger']['wandb'].get('project') isnotNone):
assertopt['logger'].get('use_tb_logger') isTrue, ('should turn on tensorboard when using wandb')
init_wandb_logger(opt)
tb_logger=None
ifopt['logger'].get('use_tb_logger'):
tb_logger=init_tb_logger(log_dir=osp.join('tb_logger', opt['name']))
returnlogger, tb_logger
defcreate_train_val_dataloader(opt, logger):
# create train and val dataloaders
train_loader, val_loader=None, None
forphase, dataset_optinopt['datasets'].items():
ifphase=='train':
dataset_enlarge_ratio=dataset_opt.get('dataset_enlarge_ratio', 1)
train_set=build_dataset(dataset_opt)
train_sampler=EnlargedSampler(train_set, opt['world_size'], opt['rank'], dataset_enlarge_ratio)
train_loader=build_dataloader(
train_set,
dataset_opt,
num_gpu=opt['num_gpu'],
dist=opt['dist'],
sampler=train_sampler,
seed=opt['manual_seed'])
num_iter_per_epoch=math.ceil(
len(train_set) *dataset_enlarge_ratio/ (dataset_opt['batch_size_per_gpu'] *opt['world_size']))
total_iters=int(opt['train']['total_iter'])
total_epochs=math.ceil(total_iters/ (num_iter_per_epoch))
logger.info('Training statistics:'
f'\n\tNumber of train images: {len(train_set)}'
f'\n\tDataset enlarge ratio: {dataset_enlarge_ratio}'
f'\n\tBatch size per gpu: {dataset_opt["batch_size_per_gpu"]}'
f'\n\tWorld size (gpu number): {opt["world_size"]}'
f'\n\tRequire iter number per epoch: {num_iter_per_epoch}'
f'\n\tTotal epochs: {total_epochs}; iters: {total_iters}.')
elifphase=='val':
val_set=build_dataset(dataset_opt)
val_loader=build_dataloader(
val_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=None, seed=opt['manual_seed'])
logger.info(f'Number of val images/folders in {dataset_opt["name"]}: 'f'{len(val_set)}')
else:
raiseValueError(f'Dataset phase {phase} is not recognized.')
returntrain_loader, train_sampler, val_loader, total_epochs, total_iters
deftrain_pipeline(root_path):
# parse options, set distributed setting, set ramdom seed
opt=parse_options(root_path, is_train=True)
torch.backends.cudnn.benchmark=True
# torch.backends.cudnn.deterministic = True
# load resume states if necessary
ifopt['path'].get('resume_state'):
device_id=torch.cuda.current_device()
resume_state=torch.load(
opt['path']['resume_state'], map_location=lambdastorage, loc: storage.cuda(device_id))
else:
resume_state=None
# mkdir for experiments and logger
ifresume_stateisNone:
make_exp_dirs(opt)
ifopt['logger'].get('use_tb_logger') andopt['rank'] ==0:
mkdir_and_rename(osp.join('tb_logger', opt['name']))
# initialize loggers
logger, tb_logger=init_loggers(opt)
# create train and validation dataloaders
result=create_train_val_dataloader(opt, logger)
train_loader, train_sampler, val_loader, total_epochs, total_iters=result
# create model
ifresume_state: # resume training
check_resume(opt, resume_state['iter'])
model=build_model(opt)
model.resume_training(resume_state) # handle optimizers and schedulers
logger.info(f"Resuming training from epoch: {resume_state['epoch']}, "f"iter: {resume_state['iter']}.")
start_epoch=resume_state['epoch']
current_iter=resume_state['iter']
else:
model=build_model(opt)
start_epoch=0
current_iter=0
# create message logger (formatted outputs)
msg_logger=MessageLogger(opt, current_iter, tb_logger)
# dataloader prefetcher
prefetch_mode=opt['datasets']['train'].get('prefetch_mode')
ifprefetch_modeisNoneorprefetch_mode=='cpu':
prefetcher=CPUPrefetcher(train_loader)
elifprefetch_mode=='cuda':
prefetcher=CUDAPrefetcher(train_loader, opt)
logger.info(f'Use {prefetch_mode} prefetch dataloader')
ifopt['datasets']['train'].get('pin_memory') isnotTrue:
raiseValueError('Please set pin_memory=True for CUDAPrefetcher.')
else:
raiseValueError(f'Wrong prefetch_mode {prefetch_mode}.'"Supported ones are: None, 'cuda', 'cpu'.")
# training
logger.info(f'Start training from epoch: {start_epoch}, iter: {current_iter+1}')
data_time, iter_time=time.time(), time.time()
start_time=time.time()
forepochinrange(start_epoch, total_epochs+1):
train_sampler.set_epoch(epoch)
prefetcher.reset()
train_data=prefetcher.next()
whiletrain_dataisnotNone:
data_time=time.time() -data_time
current_iter+=1
ifcurrent_iter>total_iters:
break
# update learning rate
model.update_learning_rate(current_iter, warmup_iter=opt['train'].get('warmup_iter', -1))
# training
model.feed_data(train_data)
model.optimize_parameters(current_iter)
iter_time=time.time() -iter_time
# log
ifcurrent_iter%opt['logger']['print_freq'] ==0:
log_vars= {'epoch': epoch, 'iter': current_iter}
log_vars.update({'lrs': model.get_current_learning_rate()})
log_vars.update({'time': iter_time, 'data_time': data_time})
log_vars.update(model.get_current_log())
msg_logger(log_vars)
# save models and training states
ifcurrent_iter%opt['logger']['save_checkpoint_freq'] ==0:
logger.info('Saving models and training states.')
model.save(epoch, current_iter)
# validation
ifopt.get('val') isnotNoneandopt['datasets'].get('val') isnotNone \
and (current_iter%opt['val']['val_freq'] ==0):
model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img'])
data_time=time.time()
iter_time=time.time()
train_data=prefetcher.next()
# end of iter
# end of epoch
consumed_time=str(datetime.timedelta(seconds=int(time.time() -start_time)))
logger.info(f'End of training. Time consumed: {consumed_time}')
logger.info('Save the latest model.')
model.save(epoch=-1, current_iter=-1) # -1 stands for the latest
ifopt.get('val') isnotNoneandopt['datasets'].get('val'):
model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img'])
iftb_logger:
tb_logger.close()
if__name__=='__main__':
root_path=osp.abspath(osp.join(__file__, osp.pardir, osp.pardir))
train_pipeline(root_path)