forked from TheAlgorithms/Python
- Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpascal_triangle.py
189 lines (161 loc) · 6.04 KB
/
pascal_triangle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
"""
This implementation demonstrates how to generate the elements of a Pascal's triangle.
The element havingva row index of r and column index of c can be derivedvas follows:
triangle[r][c] = triangle[r-1][c-1]+triangle[r-1][c]
A Pascal's triangle is a triangular array containing binomial coefficients.
https://en.wikipedia.org/wiki/Pascal%27s_triangle
"""
defprint_pascal_triangle(num_rows: int) ->None:
"""
Print Pascal's triangle for different number of rows
>>> print_pascal_triangle(5)
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
"""
triangle=generate_pascal_triangle(num_rows)
forrow_idxinrange(num_rows):
# Print left spaces
for_inrange(num_rows-row_idx-1):
print(end=" ")
# Print row values
forcol_idxinrange(row_idx+1):
ifcol_idx!=row_idx:
print(triangle[row_idx][col_idx], end=" ")
else:
print(triangle[row_idx][col_idx], end="")
print()
defgenerate_pascal_triangle(num_rows: int) ->list[list[int]]:
"""
Create Pascal's triangle for different number of rows
>>> generate_pascal_triangle(0)
[]
>>> generate_pascal_triangle(1)
[[1]]
>>> generate_pascal_triangle(2)
[[1], [1, 1]]
>>> generate_pascal_triangle(3)
[[1], [1, 1], [1, 2, 1]]
>>> generate_pascal_triangle(4)
[[1], [1, 1], [1, 2, 1], [1, 3, 3, 1]]
>>> generate_pascal_triangle(5)
[[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]]
>>> generate_pascal_triangle(-5)
Traceback (most recent call last):
...
ValueError: The input value of 'num_rows' should be greater than or equal to 0
>>> generate_pascal_triangle(7.89)
Traceback (most recent call last):
...
TypeError: The input value of 'num_rows' should be 'int'
"""
ifnotisinstance(num_rows, int):
raiseTypeError("The input value of 'num_rows' should be 'int'")
ifnum_rows==0:
return []
elifnum_rows<0:
raiseValueError(
"The input value of 'num_rows' should be greater than or equal to 0"
)
triangle: list[list[int]] = []
forcurrent_row_idxinrange(num_rows):
current_row=populate_current_row(triangle, current_row_idx)
triangle.append(current_row)
returntriangle
defpopulate_current_row(triangle: list[list[int]], current_row_idx: int) ->list[int]:
"""
>>> triangle = [[1]]
>>> populate_current_row(triangle, 1)
[1, 1]
"""
current_row= [-1] * (current_row_idx+1)
# first and last elements of current row are equal to 1
current_row[0], current_row[-1] =1, 1
forcurrent_col_idxinrange(1, current_row_idx):
calculate_current_element(
triangle, current_row, current_row_idx, current_col_idx
)
returncurrent_row
defcalculate_current_element(
triangle: list[list[int]],
current_row: list[int],
current_row_idx: int,
current_col_idx: int,
) ->None:
"""
>>> triangle = [[1], [1, 1]]
>>> current_row = [1, -1, 1]
>>> calculate_current_element(triangle, current_row, 2, 1)
>>> current_row
[1, 2, 1]
"""
above_to_left_elt=triangle[current_row_idx-1][current_col_idx-1]
above_to_right_elt=triangle[current_row_idx-1][current_col_idx]
current_row[current_col_idx] =above_to_left_elt+above_to_right_elt
defgenerate_pascal_triangle_optimized(num_rows: int) ->list[list[int]]:
"""
This function returns a matrix representing the corresponding pascal's triangle
according to the given input of number of rows of Pascal's triangle to be generated.
It reduces the operations done to generate a row by half
by eliminating redundant calculations.
:param num_rows: Integer specifying the number of rows in the Pascal's triangle
:return: 2-D List (matrix) representing the Pascal's triangle
Return the Pascal's triangle of given rows
>>> generate_pascal_triangle_optimized(3)
[[1], [1, 1], [1, 2, 1]]
>>> generate_pascal_triangle_optimized(1)
[[1]]
>>> generate_pascal_triangle_optimized(0)
[]
>>> generate_pascal_triangle_optimized(-5)
Traceback (most recent call last):
...
ValueError: The input value of 'num_rows' should be greater than or equal to 0
>>> generate_pascal_triangle_optimized(7.89)
Traceback (most recent call last):
...
TypeError: The input value of 'num_rows' should be 'int'
"""
ifnotisinstance(num_rows, int):
raiseTypeError("The input value of 'num_rows' should be 'int'")
ifnum_rows==0:
return []
elifnum_rows<0:
raiseValueError(
"The input value of 'num_rows' should be greater than or equal to 0"
)
result: list[list[int]] = [[1]]
forrow_indexinrange(1, num_rows):
temp_row= [0] +result[-1] + [0]
row_length=row_index+1
# Calculate the number of distinct elements in a row
distinct_elements=sum(divmod(row_length, 2))
row_first_half= [
temp_row[i-1] +temp_row[i] foriinrange(1, distinct_elements+1)
]
row_second_half=row_first_half[: (row_index+1) //2]
row_second_half.reverse()
row=row_first_half+row_second_half
result.append(row)
returnresult
defbenchmark() ->None:
"""
Benchmark multiple functions, with three different length int values.
"""
fromcollections.abcimportCallable
fromtimeitimporttimeit
defbenchmark_a_function(func: Callable, value: int) ->None:
call=f"{func.__name__}({value})"
timing=timeit(f"__main__.{call}", setup="import __main__")
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f"{call:38} -- {timing:.4f} seconds")
forvalueinrange(15): # (1, 7, 14):
forfuncin (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(func, value)
print()
if__name__=="__main__":
importdoctest
doctest.testmod()
benchmark()