- Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBrainActivationAnalysis.py
206 lines (146 loc) · 6.52 KB
/
BrainActivationAnalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
importmatplotlib
matplotlib.use('Agg')
importmatplotlib.pyplotasplt
importnumpy
importpandasaspd
importscipy
importseabornassns
fromscipy.statsimportzscore
importstatsmodels.apiassm
fromstatsmodels.formula.apiimportols
fromanalysisimportBehavioralSubjective
fromconfigimportROOT_DIR
plt.rcParams.update({'font.size': 24})
plt.rcParams['font.family'] ='Calibri'
graph_label=dict(color='#101010', alpha=0.95)
defplot_ba_subj_rating(df, ba, activation=True, participant=None):
color="#1f78b4"
ax1=df.plot(kind='scatter', x='subj_complexity', y=ba, s=50, c=color, figsize=(7, 5))
z=numpy.polyfit(df['subj_complexity'], df[ba], 1)
p=numpy.poly1d(z)
plt.plot(df['subj_complexity'], p(df['subj_complexity']), linewidth=1)
ifactivation:
plt.ylabel("Activation in %\n"+ba)
else:
plt.ylabel("Deactivation in %\n"+ba)
plt.xlabel("Subjective Complexity Rating")
corr=df['subj_complexity'].corr(df[ba], method='kendall')
print('subj_complexity: ~ BA: '+ba)
print('Kendall corr:', corr)
slope, intercept, r_value, p_value, std_err=scipy.stats.linregress(df['subj_complexity'], df[ba])
print('r squared:', r_value**2)
left, right=plt.xlim()
bottom, top=plt.ylim()
ax1.text(left+ ((right-left) /40), bottom+ ((top-bottom) /8), 'Kendall τ: '+format(corr, '.2f'), fontdict=graph_label)
ax1.text(left+ ((right-left) /40), bottom+ ((top-bottom) /40), 'r squared: '+format(r_value**2, '.2f'), fontdict=graph_label)
sns.despine()
plt.tight_layout()
ifactivation:
prefix=ROOT_DIR+'/analysis/output/act_subj_'
else:
prefix=ROOT_DIR+'/analysis/output/deact_subj_'
ifparticipant:
prefix+=participant+'_'
plt.savefig(prefix+ba+'.pdf', dpi=300, bbox_inches='tight', pad_inches=0)
plt.clf()
defplot_ba_for_metric(df, metric, ba, activation=True):
color=BehavioralSubjective.select_color_for_metric(metric)
fig=plt.figure(figsize=(7, 6))
z=numpy.polyfit(df[metric], df[ba], 1)
p=numpy.poly1d(z)
plt.scatter(df[metric], df[ba], s=150, c=color)
plt.plot(df[metric], p(df[metric]), linewidth=6, alpha=0.7)
#plt.ylim((0, 61))
ifmetric=="LOC":
ifactivation:
ifba=="BA44":
plt.ylabel("Activation in %\nBroca")
else:
plt.ylabel("Activation in %\n"+ba)
else:
plt.ylabel("Deactivation in %\n"+ba)
else:
plt.ylabel("")
ifba=="BA44":
plt. xlabel(metric, color=color)
else:
plt.xlabel("")
corr=df[metric].corr(df[ba], method='kendall')
print('Metric: '+metric+' ~ BA: '+ba)
print('-> Kendall corr:', corr)
slope, intercept, r_value, p_value, std_err=scipy.stats.linregress(df[metric], df[ba])
print('-> r squared:', r_value**2)
axes=plt.gca()
ifactivation:
#axes.set_yticks([0.5, 1, 1.5, 2, 2.5])
#axes.set_ylim([0.5, 2.5])
axes.set_yticks([1, 1.5, 2])
axes.set_ylim([1, 2])
else:
axes.set_yticks([-0.5, -1, -1.5, -2, -2.5])
axes.set_ylim([-0.5, -2.5])
left, right=plt.xlim()
bottom, top=plt.ylim()
axes.text(left+ ((right-left) /40), bottom+ ((top-bottom) /7), 'Kendall τ: '+format(corr, '.2f'), fontdict=graph_label)
axes.text(left+ ((right-left) /40), bottom+ ((top-bottom) /40), 'r squared: '+format(r_value**2, '.2f'), fontdict=graph_label)
sns.despine()
plt.tight_layout()
ifactivation:
prefix=ROOT_DIR+'/analysis/output/activation_'
else:
prefix=ROOT_DIR+'/analysis/output/deactivation_'
plt.savefig(prefix+metric+'_'+ba+'.pdf', dpi=300, bbox_inches='tight', pad_inches=0)
plt.clf()
plt.close(fig)
defget_bas(activation):
ifactivation:
#bas = ['BA6', 'BA21', 'BA39', 'BA45']
bas= ['BA6', 'BA21', 'BA39', 'BA44']
else:
bas= ['BA32', 'BA31']
returnbas
defcreate_plots(df, snippet_metrics, activation=True):
bas=get_bas(activation)
# plot the stats
forbainbas:
metrics= ["LOC", "DepDegree", "McCabe", "Halstead"] # for a small run with the four main representatives
metrics=list(snippet_metrics)[2:] # for a full run
formetricinmetrics:
plot_ba_for_metric(df, metric, ba, activation)
defcompute_statistics(df, activation=True):
bas=get_bas(activation)
# OLS regression
forbainbas:
print('\n\n### computing stats for '+ba)
result=ols(formula=ba+" ~ Halstead + McCabe + DepDegree", data=df).fit()
print(result.summary())
aov_table=sm.stats.anova_lm(result, typ=3)
print(aov_table)
defcompute_ba_subj_rating(activation=True):
df_subj_complexity=pd.read_csv(ROOT_DIR+'/data/subjective/SnippetSubjectiveComplexityRatings.csv')
ifactivation:
df_ba_part_cond=pd.read_csv(ROOT_DIR+'/data/fMRI/fMRI_Analyzed_BA_Snippet_Participant_Activation.csv')
else:
df_ba_part_cond=pd.read_csv(ROOT_DIR+'/data/fMRI/fMRI_Analyzed_BA_Snippet_Participant_Deactivation.csv')
df_ba_part_cond_subj=pd.merge(df_ba_part_cond, df_subj_complexity, left_on=['participant', 'Snippet'], right_on=['participant', 'snippet'])
df_ba_part_cond_subj.sort_values(by='participant', inplace=True)
bas=get_bas(activation)
# now average across participants for a group result
df_ba_part_cond_subj_act=df_ba_part_cond_subj.groupby(['snippet']).mean().reset_index()
forbainbas:
plot_ba_subj_rating(df_ba_part_cond_subj_act, ba, activation)
defmain():
print('\n# Analyzing fMRI and complexity metrics data')
df_ba_cond_act=pd.read_csv(ROOT_DIR+'/data/fMRI/fMRI_Analyzed_BA_Snippet_Activation.csv')
df_ba_cond_deact=pd.read_csv(ROOT_DIR+'/data/fMRI/fMRI_Analyzed_BA_Snippet_Deactivation.csv')
snippet_metrics=BehavioralSubjective.load_snippet_metrics()
df_ba_cond_act=pd.merge(df_ba_cond_act, snippet_metrics, how='left', left_on=['condition'], right_on=['Snippet'])
df_ba_cond_deact=pd.merge(df_ba_cond_deact, snippet_metrics, how='left', left_on=['condition'], right_on=['Snippet'])
create_plots(df_ba_cond_act, snippet_metrics, True)
create_plots(df_ba_cond_deact, snippet_metrics, False)
compute_statistics(df_ba_cond_act, True)
compute_statistics(df_ba_cond_deact, False)
compute_ba_subj_rating(True)
compute_ba_subj_rating(False)
if__name__=="__main__":
main()