https://leetcode-cn.com/problems/minimum-number-of-operations-to-make-array-continuous/
给你一个整数数组 nums 。每一次操作中,你可以将 nums 中 任意 一个元素替换成 任意 整数。 如果 nums 满足以下条件,那么它是 连续的 : nums 中所有元素都是 互不相同 的。 nums 中 最大 元素与 最小 元素的差等于 nums.length - 1 。 比方说,nums = [4, 2, 5, 3] 是 连续的 ,但是 nums = [1, 2, 3, 5, 6] 不是连续的 。 请你返回使 nums 连续 的 最少 操作次数。 示例 1: 输入:nums = [4,2,5,3] 输出:0 解释:nums 已经是连续的了。 示例 2: 输入:nums = [1,2,3,5,6] 输出:1 解释:一个可能的解是将最后一个元素变为 4 。 结果数组为 [1,2,3,5,4] ,是连续数组。 示例 3: 输入:nums = [1,10,100,1000] 输出:3 解释:一个可能的解是: - 将第二个元素变为 2 。 - 将第三个元素变为 3 。 - 将第四个元素变为 4 。 结果数组为 [1,2,3,4] ,是连续数组。 提示: 1 <= nums.length <= 105 1 <= nums[i] <= 109
- 二分
- 暂无
由于最终的数组长度一定是原数组长度。 因此题目让我们找最少操作数,其实等价于找最多保留多少个数不变,这样我们就可以通过最少的操作数使得数组连续。
朴素的思路是枚举所有的区间 [a,b] 其中 a 和 b 为区间 [min(nums),max(nums)] 中的两个数。这种思路的时间复杂度是
假设我们最终形成的连续区间是 [l, r],那么 nums[i] 一定有一个是在端点的,因为如果都不在端点,变成在端点不会使得答案更差。这样我们可以枚举 nums[i] 作为 l 或者 r,分别判断在这种情况下我们可以保留的数字个数最多是多少。
为了减少时间复杂度,我们可以先对数组排序,这样就可以二分找答案,使得时间复杂度降低。看下时间复杂度排序的时间是可以允许的,因此这种解决可以 ac。
具体地:
- 对数组去重
- 对数组排序
- 遍历 nums,对于每一个 num 我们需要找到其作为左端点时,那么右端点就是 v + on - 1,于是我们在这个数组中找值在 num 和 v + on - 1 的有多少个,这些都是可以保留的。剩下的我们需要通过替换得到。 num 作为右端点也是同理。这两种我们需要找最优的。所有 i 的最优解就是答案。
具体参考下方代码。
- 反向思考,题目要找最少操作数,其实就是找最多保留多少个数
- 对于每一个 num 我们需要找到其作为左端点时,那么右端点就是 v + on - 1,于是我们在这个数组中找值在 num 和 v + on - 1 的有多少个,这些都是可以保留的
- 排序 + 二分 减少时间复杂度
- 语言支持:Python3
Python3 Code:
importbisectclassSolution: defminOperations(self, nums: List[int]) ->int: ans=on=len(nums) nums=list(set(nums)) nums.sort() n=len(nums) fori, vinenumerate(nums): # nums[i] 一定有一个是在端点的,如果都不在端点,变成在端点不会使得答案更差r=bisect.bisect_right(nums, v+on-1) # 枚举 i 作为左端点l=bisect.bisect_left(nums, v-on+1) # 枚举 i 作为右端点ans=min(ans, n- (r-i), n- (i-l+1)) returnans+ (on-n)
复杂度分析
令 n 为数组长度。
- 时间复杂度:$O(nlogn)$
- 空间复杂度:$O(n)$
此题解由 力扣刷题插件 自动生成。
力扣的小伙伴可以关注我,这样就会第一时间收到我的动态啦~
以上就是本文的全部内容了。大家对此有何看法,欢迎给我留言,我有时间都会一一查看回答。更多算法套路可以访问我的 LeetCode 题解仓库:https://github.com/azl397985856/leetcode 。 目前已经 40K star 啦。大家也可以关注我的公众号《力扣加加》带你啃下算法这块硬骨头。
关注公众号力扣加加,努力用清晰直白的语言还原解题思路,并且有大量图解,手把手教你识别套路,高效刷题。