- Notifications
You must be signed in to change notification settings - Fork 4.3k
/
Copy pathvllm_text_completion.py
162 lines (143 loc) · 5.44 KB
/
vllm_text_completion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
""" A sample pipeline using the RunInference API to interface with an LLM using
vLLM. Takes in a set of prompts or lists of previous messages and produces
responses using a model of choice.
Requires a GPU runtime with vllm, openai, and apache-beam installed to run
correctly.
"""
importargparse
importlogging
fromcollections.abcimportIterable
importapache_beamasbeam
fromapache_beam.ml.inference.baseimportPredictionResult
fromapache_beam.ml.inference.baseimportRunInference
fromapache_beam.ml.inference.vllm_inferenceimportOpenAIChatMessage
fromapache_beam.ml.inference.vllm_inferenceimportVLLMChatModelHandler
fromapache_beam.ml.inference.vllm_inferenceimportVLLMCompletionsModelHandler
fromapache_beam.options.pipeline_optionsimportPipelineOptions
fromapache_beam.options.pipeline_optionsimportSetupOptions
fromapache_beam.runners.runnerimportPipelineResult
COMPLETION_EXAMPLES= [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
"John cena is",
]
CHAT_EXAMPLES= [
[
OpenAIChatMessage(
role='user', content='What is an example of a type of penguin?'),
OpenAIChatMessage(
role='assistant', content='Emperor penguin is a type of penguin.'),
OpenAIChatMessage(role='user', content='Tell me about them')
],
[
OpenAIChatMessage(
role='user', content='What colors are in the rainbow?'),
OpenAIChatMessage(
role='assistant',
content='Red, orange, yellow, green, blue, indigo, and violet.'),
OpenAIChatMessage(role='user', content='Do other colors ever appear?')
],
[
OpenAIChatMessage(
role='user', content='Who is the president of the United States?')
],
[
OpenAIChatMessage(role='user', content='What state is Fargo in?'),
OpenAIChatMessage(role='assistant', content='It is in North Dakota.'),
OpenAIChatMessage(role='user', content='How many people live there?'),
OpenAIChatMessage(
role='assistant',
content='Approximately 130,000 people live in Fargo, North Dakota.'
),
OpenAIChatMessage(role='user', content='What is Fargo known for?'),
],
[
OpenAIChatMessage(
role='user', content='How many fish are in the ocean?'),
],
]
defparse_known_args(argv):
"""Parses args for the workflow."""
parser=argparse.ArgumentParser()
parser.add_argument(
'--model',
dest='model',
type=str,
required=False,
default='facebook/opt-125m',
help='LLM to use for task')
parser.add_argument(
'--output',
dest='output',
type=str,
required=True,
help='Path to save output predictions.')
parser.add_argument(
'--chat',
dest='chat',
type=bool,
required=False,
default=False,
help='Whether to use chat model handler and examples')
parser.add_argument(
'--chat_template',
dest='chat_template',
type=str,
required=False,
default=None,
help='Chat template to use for chat example.')
returnparser.parse_known_args(argv)
classPostProcessor(beam.DoFn):
defprocess(self, element: PredictionResult) ->Iterable[str]:
yieldstr(element.example) +": "+str(element.inference)
defrun(
argv=None, save_main_session=True, test_pipeline=None) ->PipelineResult:
"""
Args:
argv: Command line arguments defined for this example.
save_main_session: Used for internal testing.
test_pipeline: Used for internal testing.
"""
known_args, pipeline_args=parse_known_args(argv)
pipeline_options=PipelineOptions(pipeline_args)
pipeline_options.view_as(SetupOptions).save_main_session=save_main_session
model_handler=VLLMCompletionsModelHandler(model_name=known_args.model)
input_examples=COMPLETION_EXAMPLES
ifknown_args.chat:
model_handler=VLLMChatModelHandler(
model_name=known_args.model,
chat_template_path=known_args.chat_template)
input_examples=CHAT_EXAMPLES
pipeline=test_pipeline
ifnottest_pipeline:
pipeline=beam.Pipeline(options=pipeline_options)
examples=pipeline|"Create examples">>beam.Create(input_examples)
predictions=examples|"RunInference">>RunInference(model_handler)
process_output=predictions|"Process Predictions">>beam.ParDo(
PostProcessor())
_=process_output|"WriteOutput">>beam.io.WriteToText(
known_args.output, shard_name_template='', append_trailing_newlines=True)
result=pipeline.run()
result.wait_until_finish()
returnresult
if__name__=='__main__':
logging.getLogger().setLevel(logging.INFO)
run()