- Notifications
You must be signed in to change notification settings - Fork 358
/
Copy pathfinetune.py
246 lines (219 loc) · 9.56 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Code adapted from https://github.com/bigcode-project/starcoder2/blob/main/finetune.py
importargparse
importmultiprocessing
importos
importtorch
importtransformers
fromaccelerateimportPartialState
fromdatasetsimportload_dataset
frompeftimportLoraConfig
fromtransformersimport (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
logging,
set_seed,
)
importnumpyasnp
importrandom
importwarnings
importsys
fromtrlimportSFTTrainer
fromtrl.trainerimportConstantLengthDataset
defget_args():
parser=argparse.ArgumentParser()
parser.add_argument("--model_id", type=str, default="aiXcoder/aixcoder-7b-base")
parser.add_argument("--dataset_name", type=str, default="the-stack-smol")
parser.add_argument("--subset", type=str, default="data/rust")
parser.add_argument("--split", type=str, default="train")
parser.add_argument("--fim_rate", type=float, default=0.5)
parser.add_argument("--dataset_text_field", type=str, default="content")
parser.add_argument("--max_seq_length", type=int, default=1024)
parser.add_argument("--max_steps", type=int, default=100)
parser.add_argument("--micro_batch_size", type=int, default=1)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--weight_decay", type=float, default=0.01)
parser.add_argument("--bf16", type=bool, default=True)
parser.add_argument("--attention_dropout", type=float, default=0.1)
parser.add_argument("--learning_rate", type=float, default=2e-6)
parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
parser.add_argument("--warmup_steps", type=int, default=100)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--output_dir", type=str, default="finetune_aix_7b")
parser.add_argument("--num_proc", type=int, default=None)
parser.add_argument("--push_to_hub", type=bool, default=False)
returnparser.parse_args()
defprint_rank_0(message):
iftorch.distributed.is_initialized():
iftorch.distributed.get_rank() ==0:
print(message, flush=True, file=sys.stderr)
else:
print(message, flush=True)
defprint_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params=0
all_param=0
for_, paraminmodel.named_parameters():
all_param+=param.numel()
ifparam.requires_grad:
trainable_params+=param.numel()
print_rank_0(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100*trainable_params/all_param}"
)
classRandomFIMDataset(ConstantLengthDataset):
"""
This class supports the random fill-in-the-middle (FIM) task. If `fim_rate` is greater than 0,
it constructs data in the fill-in-the-middle format with a probability of `fim_rate`.
The aiXcoder-7b-base model uses structured FIM during pre-training,
where a complete code block is constructed as the MIDDLE.
However, creating such training data involves syntactic parsing,
and we currently do not plan to open source the processing code.
"""
def__init__(self, tokenizer, dataset, dataset_text_field=None, fim_rate=0, formatting_func=None, infinite=False, seq_length=1024, num_of_sequences=1024, chars_per_token=3.6, eos_token_id=0, shuffle=True, append_concat_token=True, add_special_tokens=True):
self.fim_rate=fim_rate
self.fim_spm_rate=0.5
self.np_rand=np.random.RandomState(seed=3574)
ifself.fim_rate>0:
print_rank_0(f"constructing data wit FIM: fim_rate: {self.fim_rate}")
super().__init__(tokenizer, dataset, dataset_text_field, formatting_func, infinite, seq_length, num_of_sequences, chars_per_token, eos_token_id, shuffle, append_concat_token, add_special_tokens)
def__iter__(self):
iterator=iter(self.dataset)
more_examples=True
whilemore_examples:
buffer, buffer_len= [], 0
whileTrue:
ifbuffer_len>=self.max_buffer_size:
break
try:
ifself.fim_rate>0:
ifself.np_rand.binomial(1, self.fim_rate): # sample bernoulli dist
contents=self.formatting_func(next(iterator))
try:
boundaries=list(self.np_rand.randint(low=0, high=len(contents) +1, size=2))
boundaries.sort()
exceptValueErrorase:
print(len(contents), contents)
print(e)
raisee
prefix=contents[:boundaries[0]]
middle=contents[boundaries[0]:boundaries[1]]
suffix=contents[boundaries[1]:]
ifself.np_rand.binomial(1, self.fim_spm_rate):
contents=f"<s>▁<AIX-SPAN-PRE>▁<AIX-SPAN-POST>{suffix}▁<AIX-SPAN-MIDDLE>{prefix}{middle}</s>"
else:
contents=f"<s>▁<AIX-SPAN-PRE>{prefix}▁<AIX-SPAN-POST>{suffix}▁<AIX-SPAN-MIDDLE>{middle}</s>"
else:
contents=f"<s>{self.formatting_func(next(iterator))}</s>"
else:
contents=f"<s>{self.formatting_func(next(iterator))}</s>"
buffer.append(contents)
buffer_len+=len(buffer[-1])
exceptStopIteration:
ifself.infinite:
iterator=iter(self.dataset)
warnings.warn("The dataset reached end and the iterator is reset to the start.")
else:
more_examples=False
break
tokenized_inputs=self.tokenizer(buffer, add_special_tokens=self.add_special_tokens, truncation=False)[
"input_ids"
]
all_token_ids= []
fortokenized_inputintokenized_inputs:
all_token_ids.extend(tokenized_input)
examples= []
foriinrange(0, len(all_token_ids), self.seq_length):
input_ids=all_token_ids[i : i+self.seq_length]
iflen(input_ids) ==self.seq_length:
examples.append(input_ids)
ifself.shuffle:
random.shuffle(examples)
forexampleinexamples:
self.current_size+=1
yield {
"input_ids": torch.LongTensor(example),
"labels": torch.LongTensor(example),
}
defmain(args):
# config
bnb_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
lora_config=LoraConfig(
r=8,
target_modules=[
"q_proj",
"o_proj",
"k_proj",
"v_proj",
"gate_proj",
"up_proj",
"down_proj",
],
task_type="CAUSAL_LM",
)
# load model and dataset
token=os.environ.get("HF_TOKEN", None)
model=AutoModelForCausalLM.from_pretrained(
args.model_id,
quantization_config=bnb_config,
device_map={"": PartialState().process_index},
attention_dropout=args.attention_dropout,
attn_implementation='flash_attention_2'
)
tokenizer=AutoTokenizer.from_pretrained(args.model_id)
print_trainable_parameters(model)
data=load_dataset(
args.dataset_name,
data_dir=args.subset,
split=args.split,
token=token,
num_proc=args.num_procifargs.num_procelsemultiprocessing.cpu_count(),
)
train_data=RandomFIMDataset(
tokenizer=tokenizer, dataset=data, fim_rate=args.fim_rate, dataset_text_field=args.dataset_text_field,
infinite=True, seq_length=args.max_seq_length, eos_token_id=tokenizer.eos_token_id
)
# setup the trainer
trainer=SFTTrainer(
model=model,
train_dataset=train_data,
max_seq_length=args.max_seq_length,
args=transformers.TrainingArguments(
per_device_train_batch_size=args.micro_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
warmup_steps=args.warmup_steps,
max_steps=args.max_steps,
learning_rate=args.learning_rate,
lr_scheduler_type=args.lr_scheduler_type,
weight_decay=args.weight_decay,
bf16=args.bf16,
logging_strategy="steps",
logging_steps=10,
output_dir=args.output_dir,
optim="paged_adamw_8bit",
seed=args.seed,
run_name=f"train-{args.model_id.split('/')[-1]}",
report_to="none",
),
peft_config=lora_config,
dataset_text_field=args.dataset_text_field,
)
# launch
print_rank_0("Training...")
trainer.train()
print_rank_0("Saving the last checkpoint of the model")
model.save_pretrained(os.path.join(args.output_dir, "final_checkpoint/"))
ifargs.push_to_hub:
trainer.push_to_hub("Upload model")
print_rank_0("Training Done! ")
if__name__=="__main__":
args=get_args()
set_seed(args.seed)
os.makedirs(args.output_dir, exist_ok=True)
logging.set_verbosity_error()
main(args)