- Notifications
You must be signed in to change notification settings - Fork 46.7k
/
Copy pathgraph_adjacency_matrix.py
609 lines (512 loc) · 21.6 KB
/
graph_adjacency_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
#!/usr/bin/env python3
"""
Author: Vikram Nithyanandam
Description:
The following implementation is a robust unweighted Graph data structure
implemented using an adjacency matrix. This vertices and edges of this graph can be
effectively initialized and modified while storing your chosen generic
value in each vertex.
Adjacency Matrix: https://mathworld.wolfram.com/AdjacencyMatrix.html
Potential Future Ideas:
- Add a flag to set edge weights on and set edge weights
- Make edge weights and vertex values customizable to store whatever the client wants
- Support multigraph functionality if the client wants it
"""
from __future__ importannotations
importrandom
importunittest
frompprintimportpformat
fromtypingimportGeneric, TypeVar
importpytest
T=TypeVar("T")
classGraphAdjacencyMatrix(Generic[T]):
def__init__(
self, vertices: list[T], edges: list[list[T]], directed: bool=True
) ->None:
"""
Parameters:
- vertices: (list[T]) The list of vertex names the client wants to
pass in. Default is empty.
- edges: (list[list[T]]) The list of edges the client wants to
pass in. Each edge is a 2-element list. Default is empty.
- directed: (bool) Indicates if graph is directed or undirected.
Default is True.
"""
self.directed=directed
self.vertex_to_index: dict[T, int] = {}
self.adj_matrix: list[list[int]] = []
# Falsey checks
edges=edgesor []
vertices=verticesor []
forvertexinvertices:
self.add_vertex(vertex)
foredgeinedges:
iflen(edge) !=2:
msg=f"Invalid input: {edge} must have length 2."
raiseValueError(msg)
self.add_edge(edge[0], edge[1])
defadd_edge(self, source_vertex: T, destination_vertex: T) ->None:
"""
Creates an edge from source vertex to destination vertex. If any
given vertex doesn't exist or the edge already exists, a ValueError
will be thrown.
"""
ifnot (
self.contains_vertex(source_vertex)
andself.contains_vertex(destination_vertex)
):
msg= (
f"Incorrect input: Either {source_vertex} or "
f"{destination_vertex} does not exist"
)
raiseValueError(msg)
ifself.contains_edge(source_vertex, destination_vertex):
msg= (
"Incorrect input: The edge already exists between "
f"{source_vertex} and {destination_vertex}"
)
raiseValueError(msg)
# Get the indices of the corresponding vertices and set their edge value to 1.
u: int=self.vertex_to_index[source_vertex]
v: int=self.vertex_to_index[destination_vertex]
self.adj_matrix[u][v] =1
ifnotself.directed:
self.adj_matrix[v][u] =1
defremove_edge(self, source_vertex: T, destination_vertex: T) ->None:
"""
Removes the edge between the two vertices. If any given vertex
doesn't exist or the edge does not exist, a ValueError will be thrown.
"""
ifnot (
self.contains_vertex(source_vertex)
andself.contains_vertex(destination_vertex)
):
msg= (
f"Incorrect input: Either {source_vertex} or "
f"{destination_vertex} does not exist"
)
raiseValueError(msg)
ifnotself.contains_edge(source_vertex, destination_vertex):
msg= (
"Incorrect input: The edge does NOT exist between "
f"{source_vertex} and {destination_vertex}"
)
raiseValueError(msg)
# Get the indices of the corresponding vertices and set their edge value to 0.
u: int=self.vertex_to_index[source_vertex]
v: int=self.vertex_to_index[destination_vertex]
self.adj_matrix[u][v] =0
ifnotself.directed:
self.adj_matrix[v][u] =0
defadd_vertex(self, vertex: T) ->None:
"""
Adds a vertex to the graph. If the given vertex already exists,
a ValueError will be thrown.
"""
ifself.contains_vertex(vertex):
msg=f"Incorrect input: {vertex} already exists in this graph."
raiseValueError(msg)
# build column for vertex
forrowinself.adj_matrix:
row.append(0)
# build row for vertex and update other data structures
self.adj_matrix.append([0] * (len(self.adj_matrix) +1))
self.vertex_to_index[vertex] =len(self.adj_matrix) -1
defremove_vertex(self, vertex: T) ->None:
"""
Removes the given vertex from the graph and deletes all incoming and
outgoing edges from the given vertex as well. If the given vertex
does not exist, a ValueError will be thrown.
"""
ifnotself.contains_vertex(vertex):
msg=f"Incorrect input: {vertex} does not exist in this graph."
raiseValueError(msg)
# first slide up the rows by deleting the row corresponding to
# the vertex being deleted.
start_index=self.vertex_to_index[vertex]
self.adj_matrix.pop(start_index)
# next, slide the columns to the left by deleting the values in
# the column corresponding to the vertex being deleted
forlstinself.adj_matrix:
lst.pop(start_index)
# final clean up
self.vertex_to_index.pop(vertex)
# decrement indices for vertices shifted by the deleted vertex in the adj matrix
forinner_vertexinself.vertex_to_index:
ifself.vertex_to_index[inner_vertex] >=start_index:
self.vertex_to_index[inner_vertex] = (
self.vertex_to_index[inner_vertex] -1
)
defcontains_vertex(self, vertex: T) ->bool:
"""
Returns True if the graph contains the vertex, False otherwise.
"""
returnvertexinself.vertex_to_index
defcontains_edge(self, source_vertex: T, destination_vertex: T) ->bool:
"""
Returns True if the graph contains the edge from the source_vertex to the
destination_vertex, False otherwise. If any given vertex doesn't exist, a
ValueError will be thrown.
"""
ifnot (
self.contains_vertex(source_vertex)
andself.contains_vertex(destination_vertex)
):
msg= (
f"Incorrect input: Either {source_vertex} "
f"or {destination_vertex} does not exist."
)
raiseValueError(msg)
u=self.vertex_to_index[source_vertex]
v=self.vertex_to_index[destination_vertex]
returnself.adj_matrix[u][v] ==1
defclear_graph(self) ->None:
"""
Clears all vertices and edges.
"""
self.vertex_to_index= {}
self.adj_matrix= []
def__repr__(self) ->str:
first="Adj Matrix:\n"+pformat(self.adj_matrix)
second="\nVertex to index mapping:\n"+pformat(self.vertex_to_index)
returnfirst+second
classTestGraphMatrix(unittest.TestCase):
def__assert_graph_edge_exists_check(
self,
undirected_graph: GraphAdjacencyMatrix,
directed_graph: GraphAdjacencyMatrix,
edge: list[int],
) ->None:
assertundirected_graph.contains_edge(edge[0], edge[1])
assertundirected_graph.contains_edge(edge[1], edge[0])
assertdirected_graph.contains_edge(edge[0], edge[1])
def__assert_graph_edge_does_not_exist_check(
self,
undirected_graph: GraphAdjacencyMatrix,
directed_graph: GraphAdjacencyMatrix,
edge: list[int],
) ->None:
assertnotundirected_graph.contains_edge(edge[0], edge[1])
assertnotundirected_graph.contains_edge(edge[1], edge[0])
assertnotdirected_graph.contains_edge(edge[0], edge[1])
def__assert_graph_vertex_exists_check(
self,
undirected_graph: GraphAdjacencyMatrix,
directed_graph: GraphAdjacencyMatrix,
vertex: int,
) ->None:
assertundirected_graph.contains_vertex(vertex)
assertdirected_graph.contains_vertex(vertex)
def__assert_graph_vertex_does_not_exist_check(
self,
undirected_graph: GraphAdjacencyMatrix,
directed_graph: GraphAdjacencyMatrix,
vertex: int,
) ->None:
assertnotundirected_graph.contains_vertex(vertex)
assertnotdirected_graph.contains_vertex(vertex)
def__generate_random_edges(
self, vertices: list[int], edge_pick_count: int
) ->list[list[int]]:
assertedge_pick_count<=len(vertices)
random_source_vertices: list[int] =random.sample(
vertices[0 : int(len(vertices) /2)], edge_pick_count
)
random_destination_vertices: list[int] =random.sample(
vertices[int(len(vertices) /2) :], edge_pick_count
)
random_edges: list[list[int]] = []
forsourceinrandom_source_vertices:
fordestinrandom_destination_vertices:
random_edges.append([source, dest])
returnrandom_edges
def__generate_graphs(
self, vertex_count: int, min_val: int, max_val: int, edge_pick_count: int
) ->tuple[GraphAdjacencyMatrix, GraphAdjacencyMatrix, list[int], list[list[int]]]:
ifmax_val-min_val+1<vertex_count:
raiseValueError(
"Will result in duplicate vertices. Either increase "
"range between min_val and max_val or decrease vertex count"
)
# generate graph input
random_vertices: list[int] =random.sample(
range(min_val, max_val+1), vertex_count
)
random_edges: list[list[int]] =self.__generate_random_edges(
random_vertices, edge_pick_count
)
# build graphs
undirected_graph=GraphAdjacencyMatrix(
vertices=random_vertices, edges=random_edges, directed=False
)
directed_graph=GraphAdjacencyMatrix(
vertices=random_vertices, edges=random_edges, directed=True
)
returnundirected_graph, directed_graph, random_vertices, random_edges
deftest_init_check(self) ->None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) =self.__generate_graphs(20, 0, 100, 4)
# test graph initialization with vertices and edges
fornuminrandom_vertices:
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, num
)
foredgeinrandom_edges:
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
assertnotundirected_graph.directed
assertdirected_graph.directed
deftest_contains_vertex(self) ->None:
random_vertices: list[int] =random.sample(range(101), 20)
# Build graphs WITHOUT edges
undirected_graph=GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=False
)
directed_graph=GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=True
)
# Test contains_vertex
fornuminrange(101):
assert (numinrandom_vertices) ==undirected_graph.contains_vertex(num)
assert (numinrandom_vertices) ==directed_graph.contains_vertex(num)
deftest_add_vertices(self) ->None:
random_vertices: list[int] =random.sample(range(101), 20)
# build empty graphs
undirected_graph: GraphAdjacencyMatrix=GraphAdjacencyMatrix(
vertices=[], edges=[], directed=False
)
directed_graph: GraphAdjacencyMatrix=GraphAdjacencyMatrix(
vertices=[], edges=[], directed=True
)
# run add_vertex
fornuminrandom_vertices:
undirected_graph.add_vertex(num)
fornuminrandom_vertices:
directed_graph.add_vertex(num)
# test add_vertex worked
fornuminrandom_vertices:
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, num
)
deftest_remove_vertices(self) ->None:
random_vertices: list[int] =random.sample(range(101), 20)
# build graphs WITHOUT edges
undirected_graph=GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=False
)
directed_graph=GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=True
)
# test remove_vertex worked
fornuminrandom_vertices:
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, num
)
undirected_graph.remove_vertex(num)
directed_graph.remove_vertex(num)
self.__assert_graph_vertex_does_not_exist_check(
undirected_graph, directed_graph, num
)
deftest_add_and_remove_vertices_repeatedly(self) ->None:
random_vertices1: list[int] =random.sample(range(51), 20)
random_vertices2: list[int] =random.sample(range(51, 101), 20)
# build graphs WITHOUT edges
undirected_graph=GraphAdjacencyMatrix(
vertices=random_vertices1, edges=[], directed=False
)
directed_graph=GraphAdjacencyMatrix(
vertices=random_vertices1, edges=[], directed=True
)
# test adding and removing vertices
fori, _inenumerate(random_vertices1):
undirected_graph.add_vertex(random_vertices2[i])
directed_graph.add_vertex(random_vertices2[i])
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, random_vertices2[i]
)
undirected_graph.remove_vertex(random_vertices1[i])
directed_graph.remove_vertex(random_vertices1[i])
self.__assert_graph_vertex_does_not_exist_check(
undirected_graph, directed_graph, random_vertices1[i]
)
# remove all vertices
fori, _inenumerate(random_vertices1):
undirected_graph.remove_vertex(random_vertices2[i])
directed_graph.remove_vertex(random_vertices2[i])
self.__assert_graph_vertex_does_not_exist_check(
undirected_graph, directed_graph, random_vertices2[i]
)
deftest_contains_edge(self) ->None:
# generate graphs and graph input
vertex_count=20
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) =self.__generate_graphs(vertex_count, 0, 100, 4)
# generate all possible edges for testing
all_possible_edges: list[list[int]] = []
foriinrange(vertex_count-1):
forjinrange(i+1, vertex_count):
all_possible_edges.append([random_vertices[i], random_vertices[j]])
all_possible_edges.append([random_vertices[j], random_vertices[i]])
# test contains_edge function
foredgeinall_possible_edges:
ifedgeinrandom_edges:
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
elif [edge[1], edge[0]] inrandom_edges:
# since this edge exists for undirected but the reverse may
# not exist for directed
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, [edge[1], edge[0]]
)
else:
self.__assert_graph_edge_does_not_exist_check(
undirected_graph, directed_graph, edge
)
deftest_add_edge(self) ->None:
# generate graph input
random_vertices: list[int] =random.sample(range(101), 15)
random_edges: list[list[int]] =self.__generate_random_edges(random_vertices, 4)
# build graphs WITHOUT edges
undirected_graph=GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=False
)
directed_graph=GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=True
)
# run and test add_edge
foredgeinrandom_edges:
undirected_graph.add_edge(edge[0], edge[1])
directed_graph.add_edge(edge[0], edge[1])
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
deftest_remove_edge(self) ->None:
# generate graph input and graphs
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) =self.__generate_graphs(20, 0, 100, 4)
# run and test remove_edge
foredgeinrandom_edges:
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
undirected_graph.remove_edge(edge[0], edge[1])
directed_graph.remove_edge(edge[0], edge[1])
self.__assert_graph_edge_does_not_exist_check(
undirected_graph, directed_graph, edge
)
deftest_add_and_remove_edges_repeatedly(self) ->None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) =self.__generate_graphs(20, 0, 100, 4)
# make some more edge options!
more_random_edges: list[list[int]] = []
whilelen(more_random_edges) !=len(random_edges):
edges: list[list[int]] =self.__generate_random_edges(random_vertices, 4)
foredgeinedges:
iflen(more_random_edges) ==len(random_edges):
break
elifedgenotinmore_random_edgesandedgenotinrandom_edges:
more_random_edges.append(edge)
fori, _inenumerate(random_edges):
undirected_graph.add_edge(more_random_edges[i][0], more_random_edges[i][1])
directed_graph.add_edge(more_random_edges[i][0], more_random_edges[i][1])
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, more_random_edges[i]
)
undirected_graph.remove_edge(random_edges[i][0], random_edges[i][1])
directed_graph.remove_edge(random_edges[i][0], random_edges[i][1])
self.__assert_graph_edge_does_not_exist_check(
undirected_graph, directed_graph, random_edges[i]
)
deftest_add_vertex_exception_check(self) ->None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) =self.__generate_graphs(20, 0, 100, 4)
forvertexinrandom_vertices:
withpytest.raises(ValueError):
undirected_graph.add_vertex(vertex)
withpytest.raises(ValueError):
directed_graph.add_vertex(vertex)
deftest_remove_vertex_exception_check(self) ->None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) =self.__generate_graphs(20, 0, 100, 4)
foriinrange(101):
ifinotinrandom_vertices:
withpytest.raises(ValueError):
undirected_graph.remove_vertex(i)
withpytest.raises(ValueError):
directed_graph.remove_vertex(i)
deftest_add_edge_exception_check(self) ->None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) =self.__generate_graphs(20, 0, 100, 4)
foredgeinrandom_edges:
withpytest.raises(ValueError):
undirected_graph.add_edge(edge[0], edge[1])
withpytest.raises(ValueError):
directed_graph.add_edge(edge[0], edge[1])
deftest_remove_edge_exception_check(self) ->None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) =self.__generate_graphs(20, 0, 100, 4)
more_random_edges: list[list[int]] = []
whilelen(more_random_edges) !=len(random_edges):
edges: list[list[int]] =self.__generate_random_edges(random_vertices, 4)
foredgeinedges:
iflen(more_random_edges) ==len(random_edges):
break
elifedgenotinmore_random_edgesandedgenotinrandom_edges:
more_random_edges.append(edge)
foredgeinmore_random_edges:
withpytest.raises(ValueError):
undirected_graph.remove_edge(edge[0], edge[1])
withpytest.raises(ValueError):
directed_graph.remove_edge(edge[0], edge[1])
deftest_contains_edge_exception_check(self) ->None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) =self.__generate_graphs(20, 0, 100, 4)
forvertexinrandom_vertices:
withpytest.raises(ValueError):
undirected_graph.contains_edge(vertex, 102)
withpytest.raises(ValueError):
directed_graph.contains_edge(vertex, 102)
withpytest.raises(ValueError):
undirected_graph.contains_edge(103, 102)
withpytest.raises(ValueError):
directed_graph.contains_edge(103, 102)
if__name__=="__main__":
unittest.main()