- Notifications
You must be signed in to change notification settings - Fork 46.7k
/
Copy pathcheck_bipatrite.py
183 lines (158 loc) · 6.1 KB
/
check_bipatrite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
fromcollectionsimportdefaultdict, deque
defis_bipartite_dfs(graph: defaultdict[int, list[int]]) ->bool:
"""
Check if a graph is bipartite using depth-first search (DFS).
Args:
`graph`: Adjacency list representing the graph.
Returns:
``True`` if bipartite, ``False`` otherwise.
Checks if the graph can be divided into two sets of vertices, such that no two
vertices within the same set are connected by an edge.
Examples:
>>> # FIXME: This test should pass.
>>> is_bipartite_dfs(defaultdict(list, {0: [1, 2], 1: [0, 3], 2: [0, 4]}))
Traceback (most recent call last):
...
RuntimeError: dictionary changed size during iteration
>>> is_bipartite_dfs(defaultdict(list, {0: [1, 2], 1: [0, 3], 2: [0, 1]}))
False
>>> is_bipartite_dfs({})
True
>>> is_bipartite_dfs({0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2]})
True
>>> is_bipartite_dfs({0: [1, 2, 3], 1: [0, 2], 2: [0, 1, 3], 3: [0, 2]})
False
>>> is_bipartite_dfs({0: [4], 1: [], 2: [4], 3: [4], 4: [0, 2, 3]})
True
>>> is_bipartite_dfs({0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: [0]})
False
>>> is_bipartite_dfs({7: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: [0]})
Traceback (most recent call last):
...
KeyError: 0
>>> # FIXME: This test should fails with KeyError: 4.
>>> is_bipartite_dfs({0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 9: [0]})
False
>>> is_bipartite_dfs({0: [-1, 3], 1: [0, -2]})
Traceback (most recent call last):
...
KeyError: -1
>>> is_bipartite_dfs({-1: [0, 2], 0: [-1, 1], 1: [0, 2], 2: [-1, 1]})
True
>>> is_bipartite_dfs({0.9: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2]})
Traceback (most recent call last):
...
KeyError: 0
>>> # FIXME: This test should fails with
>>> # TypeError: list indices must be integers or...
>>> is_bipartite_dfs({0: [1.0, 3.0], 1.0: [0, 2.0], 2.0: [1.0, 3.0], 3.0: [0, 2.0]})
True
>>> is_bipartite_dfs({"a": [1, 3], "b": [0, 2], "c": [1, 3], "d": [0, 2]})
Traceback (most recent call last):
...
KeyError: 1
>>> is_bipartite_dfs({0: ["b", "d"], 1: ["a", "c"], 2: ["b", "d"], 3: ["a", "c"]})
Traceback (most recent call last):
...
KeyError: 'b'
"""
defdepth_first_search(node: int, color: int) ->bool:
"""
Perform Depth-First Search (DFS) on the graph starting from a node.
Args:
node: The current node being visited.
color: The color assigned to the current node.
Returns:
True if the graph is bipartite starting from the current node,
False otherwise.
"""
ifvisited[node] ==-1:
visited[node] =color
forneighboringraph[node]:
ifnotdepth_first_search(neighbor, 1-color):
returnFalse
returnvisited[node] ==color
visited: defaultdict[int, int] =defaultdict(lambda: -1)
fornodeingraph:
ifvisited[node] ==-1andnotdepth_first_search(node, 0):
returnFalse
returnTrue
defis_bipartite_bfs(graph: defaultdict[int, list[int]]) ->bool:
"""
Check if a graph is bipartite using a breadth-first search (BFS).
Args:
`graph`: Adjacency list representing the graph.
Returns:
``True`` if bipartite, ``False`` otherwise.
Check if the graph can be divided into two sets of vertices, such that no two
vertices within the same set are connected by an edge.
Examples:
>>> # FIXME: This test should pass.
>>> is_bipartite_bfs(defaultdict(list, {0: [1, 2], 1: [0, 3], 2: [0, 4]}))
Traceback (most recent call last):
...
RuntimeError: dictionary changed size during iteration
>>> is_bipartite_bfs(defaultdict(list, {0: [1, 2], 1: [0, 2], 2: [0, 1]}))
False
>>> is_bipartite_bfs({})
True
>>> is_bipartite_bfs({0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2]})
True
>>> is_bipartite_bfs({0: [1, 2, 3], 1: [0, 2], 2: [0, 1, 3], 3: [0, 2]})
False
>>> is_bipartite_bfs({0: [4], 1: [], 2: [4], 3: [4], 4: [0, 2, 3]})
True
>>> is_bipartite_bfs({0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: [0]})
False
>>> is_bipartite_bfs({7: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: [0]})
Traceback (most recent call last):
...
KeyError: 0
>>> # FIXME: This test should fails with KeyError: 4.
>>> is_bipartite_bfs({0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 9: [0]})
False
>>> is_bipartite_bfs({0: [-1, 3], 1: [0, -2]})
Traceback (most recent call last):
...
KeyError: -1
>>> is_bipartite_bfs({-1: [0, 2], 0: [-1, 1], 1: [0, 2], 2: [-1, 1]})
True
>>> is_bipartite_bfs({0.9: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2]})
Traceback (most recent call last):
...
KeyError: 0
>>> # FIXME: This test should fails with
>>> # TypeError: list indices must be integers or...
>>> is_bipartite_bfs({0: [1.0, 3.0], 1.0: [0, 2.0], 2.0: [1.0, 3.0], 3.0: [0, 2.0]})
True
>>> is_bipartite_bfs({"a": [1, 3], "b": [0, 2], "c": [1, 3], "d": [0, 2]})
Traceback (most recent call last):
...
KeyError: 1
>>> is_bipartite_bfs({0: ["b", "d"], 1: ["a", "c"], 2: ["b", "d"], 3: ["a", "c"]})
Traceback (most recent call last):
...
KeyError: 'b'
"""
visited: defaultdict[int, int] =defaultdict(lambda: -1)
fornodeingraph:
ifvisited[node] ==-1:
queue: deque[int] =deque()
queue.append(node)
visited[node] =0
whilequeue:
curr_node=queue.popleft()
forneighboringraph[curr_node]:
ifvisited[neighbor] ==-1:
visited[neighbor] =1-visited[curr_node]
queue.append(neighbor)
elifvisited[neighbor] ==visited[curr_node]:
returnFalse
returnTrue
if__name__=="__main":
importdoctest
result=doctest.testmod()
ifresult.failed:
print(f"{result.failed} test(s) failed.")
else:
print("All tests passed!")