- Notifications
You must be signed in to change notification settings - Fork 46.7k
/
Copy pathbidirectional_breadth_first_search.py
188 lines (151 loc) · 5.9 KB
/
bidirectional_breadth_first_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""
https://en.wikipedia.org/wiki/Bidirectional_search
"""
from __future__ importannotations
importtime
Path=list[tuple[int, int]]
grid= [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
delta= [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
classNode:
def__init__(
self, pos_x: int, pos_y: int, goal_x: int, goal_y: int, parent: Node|None
):
self.pos_x=pos_x
self.pos_y=pos_y
self.pos= (pos_y, pos_x)
self.goal_x=goal_x
self.goal_y=goal_y
self.parent=parent
classBreadthFirstSearch:
"""
# Comment out slow pytests...
# 9.15s call graphs/bidirectional_breadth_first_search.py:: \
# graphs.bidirectional_breadth_first_search.BreadthFirstSearch
# >>> bfs = BreadthFirstSearch((0, 0), (len(grid) - 1, len(grid[0]) - 1))
# >>> (bfs.start.pos_y + delta[3][0], bfs.start.pos_x + delta[3][1])
(0, 1)
# >>> [x.pos for x in bfs.get_successors(bfs.start)]
[(1, 0), (0, 1)]
# >>> (bfs.start.pos_y + delta[2][0], bfs.start.pos_x + delta[2][1])
(1, 0)
# >>> bfs.retrace_path(bfs.start)
[(0, 0)]
# >>> bfs.search() # doctest: +NORMALIZE_WHITESPACE
[(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 1),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (6, 5), (6, 6)]
"""
def__init__(self, start: tuple[int, int], goal: tuple[int, int]):
self.start=Node(start[1], start[0], goal[1], goal[0], None)
self.target=Node(goal[1], goal[0], goal[1], goal[0], None)
self.node_queue= [self.start]
self.reached=False
defsearch(self) ->Path|None:
whileself.node_queue:
current_node=self.node_queue.pop(0)
ifcurrent_node.pos==self.target.pos:
self.reached=True
returnself.retrace_path(current_node)
successors=self.get_successors(current_node)
fornodeinsuccessors:
self.node_queue.append(node)
ifnotself.reached:
return [self.start.pos]
returnNone
defget_successors(self, parent: Node) ->list[Node]:
"""
Returns a list of successors (both in the grid and free spaces)
"""
successors= []
foractionindelta:
pos_x=parent.pos_x+action[1]
pos_y=parent.pos_y+action[0]
ifnot (0<=pos_x<=len(grid[0]) -1and0<=pos_y<=len(grid) -1):
continue
ifgrid[pos_y][pos_x] !=0:
continue
successors.append(
Node(pos_x, pos_y, self.target.pos_y, self.target.pos_x, parent)
)
returnsuccessors
defretrace_path(self, node: Node|None) ->Path:
"""
Retrace the path from parents to parents until start node
"""
current_node=node
path= []
whilecurrent_nodeisnotNone:
path.append((current_node.pos_y, current_node.pos_x))
current_node=current_node.parent
path.reverse()
returnpath
classBidirectionalBreadthFirstSearch:
"""
>>> bd_bfs = BidirectionalBreadthFirstSearch((0, 0), (len(grid) - 1,
... len(grid[0]) - 1))
>>> bd_bfs.fwd_bfs.start.pos == bd_bfs.bwd_bfs.target.pos
True
>>> bd_bfs.retrace_bidirectional_path(bd_bfs.fwd_bfs.start,
... bd_bfs.bwd_bfs.start)
[(0, 0)]
>>> bd_bfs.search() # doctest: +NORMALIZE_WHITESPACE
[(0, 0), (0, 1), (0, 2), (1, 2), (2, 2), (2, 3),
(2, 4), (3, 4), (3, 5), (3, 6), (4, 6), (5, 6), (6, 6)]
"""
def__init__(self, start, goal):
self.fwd_bfs=BreadthFirstSearch(start, goal)
self.bwd_bfs=BreadthFirstSearch(goal, start)
self.reached=False
defsearch(self) ->Path|None:
whileself.fwd_bfs.node_queueorself.bwd_bfs.node_queue:
current_fwd_node=self.fwd_bfs.node_queue.pop(0)
current_bwd_node=self.bwd_bfs.node_queue.pop(0)
ifcurrent_bwd_node.pos==current_fwd_node.pos:
self.reached=True
returnself.retrace_bidirectional_path(
current_fwd_node, current_bwd_node
)
self.fwd_bfs.target=current_bwd_node
self.bwd_bfs.target=current_fwd_node
successors= {
self.fwd_bfs: self.fwd_bfs.get_successors(current_fwd_node),
self.bwd_bfs: self.bwd_bfs.get_successors(current_bwd_node),
}
forbfsin [self.fwd_bfs, self.bwd_bfs]:
fornodeinsuccessors[bfs]:
bfs.node_queue.append(node)
ifnotself.reached:
return [self.fwd_bfs.start.pos]
returnNone
defretrace_bidirectional_path(self, fwd_node: Node, bwd_node: Node) ->Path:
fwd_path=self.fwd_bfs.retrace_path(fwd_node)
bwd_path=self.bwd_bfs.retrace_path(bwd_node)
bwd_path.pop()
bwd_path.reverse()
path=fwd_path+bwd_path
returnpath
if__name__=="__main__":
# all coordinates are given in format [y,x]
importdoctest
doctest.testmod()
init= (0, 0)
goal= (len(grid) -1, len(grid[0]) -1)
forelemingrid:
print(elem)
start_bfs_time=time.time()
bfs=BreadthFirstSearch(init, goal)
path=bfs.search()
bfs_time=time.time() -start_bfs_time
print("Unidirectional BFS computation time : ", bfs_time)
start_bd_bfs_time=time.time()
bd_bfs=BidirectionalBreadthFirstSearch(init, goal)
bd_path=bd_bfs.search()
bd_bfs_time=time.time() -start_bd_bfs_time
print("Bidirectional BFS computation time : ", bd_bfs_time)