- Notifications
You must be signed in to change notification settings - Fork 46.7k
/
Copy pathsol1.py
91 lines (79 loc) · 2.59 KB
/
sol1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""
Project Euler Problem 27
https://projecteuler.net/problem=27
Problem Statement:
Euler discovered the remarkable quadratic formula:
n2 + n + 41
It turns out that the formula will produce 40 primes for the consecutive values
n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible
by 41, and certainly when n = 41, 412 + 41 + 41 is clearly divisible by 41.
The incredible formula n2 - 79n + 1601 was discovered, which produces 80 primes
for the consecutive values n = 0 to 79. The product of the coefficients, -79 and
1601, is -126479.
Considering quadratics of the form:
n² + an + b, where |a| < 1000 and |b| < 1000
where |n| is the modulus/absolute value of ne.g. |11| = 11 and |-4| = 4
Find the product of the coefficients, a and b, for the quadratic expression that
produces the maximum number of primes for consecutive values of n, starting with
n = 0.
"""
importmath
defis_prime(number: int) ->bool:
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
Returns boolean representing primality of given number num (i.e., if the
result is true, then the number is indeed prime else it is not).
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(2999)
True
>>> is_prime(0)
False
>>> is_prime(1)
False
>>> is_prime(-10)
False
"""
if1<number<4:
# 2 and 3 are primes
returnTrue
elifnumber<2ornumber%2==0ornumber%3==0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
returnFalse
# All primes number are in format of 6k +/- 1
foriinrange(5, int(math.sqrt(number) +1), 6):
ifnumber%i==0ornumber% (i+2) ==0:
returnFalse
returnTrue
defsolution(a_limit: int=1000, b_limit: int=1000) ->int:
"""
>>> solution(1000, 1000)
-59231
>>> solution(200, 1000)
-59231
>>> solution(200, 200)
-4925
>>> solution(-1000, 1000)
0
>>> solution(-1000, -1000)
0
"""
longest= [0, 0, 0] # length, a, b
forainrange((a_limit*-1) +1, a_limit):
forbinrange(2, b_limit):
ifis_prime(b):
count=0
n=0
whileis_prime((n**2) + (a*n) +b):
count+=1
n+=1
ifcount>longest[0]:
longest= [count, a, b]
ans=longest[1] *longest[2]
returnans
if__name__=="__main__":
print(solution(1000, 1000))