- Notifications
You must be signed in to change notification settings - Fork 46.7k
/
Copy pathhardy_ramanujanalgo.py
45 lines (35 loc) · 1.02 KB
/
hardy_ramanujanalgo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# This theorem states that the number of prime factors of n
# will be approximately log(log(n)) for most natural numbers n
importmath
defexact_prime_factor_count(n: int) ->int:
"""
>>> exact_prime_factor_count(51242183)
3
"""
count=0
ifn%2==0:
count+=1
whilen%2==0:
n=int(n/2)
# the n input value must be odd so that
# we can skip one element (ie i += 2)
i=3
whilei<=int(math.sqrt(n)):
ifn%i==0:
count+=1
whilen%i==0:
n=int(n/i)
i=i+2
# this condition checks the prime
# number n is greater than 2
ifn>2:
count+=1
returncount
if__name__=="__main__":
n=51242183
print(f"The number of distinct prime factors is/are {exact_prime_factor_count(n)}")
print(f"The value of log(log(n)) is {math.log(math.log(n)):.4f}")
"""
The number of distinct prime factors is/are 3
The value of log(log(n)) is 2.8765
"""