- Notifications
You must be signed in to change notification settings - Fork 46.7k
/
Copy pathbreadth_first_search_shortest_path_2.py
111 lines (100 loc) · 3.41 KB
/
breadth_first_search_shortest_path_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
"""Breadth-first search shortest path implementations.
doctest:
python -m doctest -v bfs_shortest_path.py
Manual test:
python bfs_shortest_path.py
"""
demo_graph= {
"A": ["B", "C", "E"],
"B": ["A", "D", "E"],
"C": ["A", "F", "G"],
"D": ["B"],
"E": ["A", "B", "D"],
"F": ["C"],
"G": ["C"],
}
defbfs_shortest_path(graph: dict, start, goal) ->list[str]:
"""Find shortest path between `start` and `goal` nodes.
Args:
graph (dict): node/list of neighboring nodes key/value pairs.
start: start node.
goal: target node.
Returns:
Shortest path between `start` and `goal` nodes as a string of nodes.
'Not found' string if no path found.
Example:
>>> bfs_shortest_path(demo_graph, "G", "D")
['G', 'C', 'A', 'B', 'D']
>>> bfs_shortest_path(demo_graph, "G", "G")
['G']
>>> bfs_shortest_path(demo_graph, "G", "Unknown")
[]
"""
# keep track of explored nodes
explored=set()
# keep track of all the paths to be checked
queue= [[start]]
# return path if start is goal
ifstart==goal:
return [start]
# keeps looping until all possible paths have been checked
whilequeue:
# pop the first path from the queue
path=queue.pop(0)
# get the last node from the path
node=path[-1]
ifnodenotinexplored:
neighbours=graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
forneighbourinneighbours:
new_path=list(path)
new_path.append(neighbour)
queue.append(new_path)
# return path if neighbour is goal
ifneighbour==goal:
returnnew_path
# mark node as explored
explored.add(node)
# in case there's no path between the 2 nodes
return []
defbfs_shortest_path_distance(graph: dict, start, target) ->int:
"""Find shortest path distance between `start` and `target` nodes.
Args:
graph: node/list of neighboring nodes key/value pairs.
start: node to start search from.
target: node to search for.
Returns:
Number of edges in shortest path between `start` and `target` nodes.
-1 if no path exists.
Example:
>>> bfs_shortest_path_distance(demo_graph, "G", "D")
4
>>> bfs_shortest_path_distance(demo_graph, "A", "A")
0
>>> bfs_shortest_path_distance(demo_graph, "A", "Unknown")
-1
"""
ifnotgraphorstartnotingraphortargetnotingraph:
return-1
ifstart==target:
return0
queue= [start]
visited=set(start)
# Keep tab on distances from `start` node.
dist= {start: 0, target: -1}
whilequeue:
node=queue.pop(0)
ifnode==target:
dist[target] = (
dist[node] ifdist[target] ==-1elsemin(dist[target], dist[node])
)
foradjacentingraph[node]:
ifadjacentnotinvisited:
visited.add(adjacent)
queue.append(adjacent)
dist[adjacent] =dist[node] +1
returndist[target]
if__name__=="__main__":
print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4