- Notifications
You must be signed in to change notification settings - Fork 46.7k
/
Copy pathbidirectional_a_star.py
259 lines (215 loc) · 8.01 KB
/
bidirectional_a_star.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
"""
https://en.wikipedia.org/wiki/Bidirectional_search
"""
from __future__ importannotations
importtime
frommathimportsqrt
# 1 for manhattan, 0 for euclidean
HEURISTIC=0
grid= [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
delta= [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
TPosition=tuple[int, int]
classNode:
"""
>>> k = Node(0, 0, 4, 3, 0, None)
>>> k.calculate_heuristic()
5.0
>>> n = Node(1, 4, 3, 4, 2, None)
>>> n.calculate_heuristic()
2.0
>>> l = [k, n]
>>> n == l[0]
False
>>> l.sort()
>>> n == l[0]
True
"""
def__init__(
self,
pos_x: int,
pos_y: int,
goal_x: int,
goal_y: int,
g_cost: int,
parent: Node|None,
) ->None:
self.pos_x=pos_x
self.pos_y=pos_y
self.pos= (pos_y, pos_x)
self.goal_x=goal_x
self.goal_y=goal_y
self.g_cost=g_cost
self.parent=parent
self.h_cost=self.calculate_heuristic()
self.f_cost=self.g_cost+self.h_cost
defcalculate_heuristic(self) ->float:
"""
Heuristic for the A*
"""
dy=self.pos_x-self.goal_x
dx=self.pos_y-self.goal_y
ifHEURISTIC==1:
returnabs(dx) +abs(dy)
else:
returnsqrt(dy**2+dx**2)
def__lt__(self, other: Node) ->bool:
returnself.f_cost<other.f_cost
classAStar:
"""
>>> astar = AStar((0, 0), (len(grid) - 1, len(grid[0]) - 1))
>>> (astar.start.pos_y + delta[3][0], astar.start.pos_x + delta[3][1])
(0, 1)
>>> [x.pos for x in astar.get_successors(astar.start)]
[(1, 0), (0, 1)]
>>> (astar.start.pos_y + delta[2][0], astar.start.pos_x + delta[2][1])
(1, 0)
>>> astar.retrace_path(astar.start)
[(0, 0)]
>>> astar.search() # doctest: +NORMALIZE_WHITESPACE
[(0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (2, 3), (3, 3),
(4, 3), (4, 4), (5, 4), (5, 5), (6, 5), (6, 6)]
"""
def__init__(self, start: TPosition, goal: TPosition):
self.start=Node(start[1], start[0], goal[1], goal[0], 0, None)
self.target=Node(goal[1], goal[0], goal[1], goal[0], 99999, None)
self.open_nodes= [self.start]
self.closed_nodes: list[Node] = []
self.reached=False
defsearch(self) ->list[TPosition]:
whileself.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
current_node=self.open_nodes.pop(0)
ifcurrent_node.pos==self.target.pos:
returnself.retrace_path(current_node)
self.closed_nodes.append(current_node)
successors=self.get_successors(current_node)
forchild_nodeinsuccessors:
ifchild_nodeinself.closed_nodes:
continue
ifchild_nodenotinself.open_nodes:
self.open_nodes.append(child_node)
else:
# retrieve the best current path
better_node=self.open_nodes.pop(self.open_nodes.index(child_node))
ifchild_node.g_cost<better_node.g_cost:
self.open_nodes.append(child_node)
else:
self.open_nodes.append(better_node)
return [self.start.pos]
defget_successors(self, parent: Node) ->list[Node]:
"""
Returns a list of successors (both in the grid and free spaces)
"""
successors= []
foractionindelta:
pos_x=parent.pos_x+action[1]
pos_y=parent.pos_y+action[0]
ifnot (0<=pos_x<=len(grid[0]) -1and0<=pos_y<=len(grid) -1):
continue
ifgrid[pos_y][pos_x] !=0:
continue
successors.append(
Node(
pos_x,
pos_y,
self.target.pos_y,
self.target.pos_x,
parent.g_cost+1,
parent,
)
)
returnsuccessors
defretrace_path(self, node: Node|None) ->list[TPosition]:
"""
Retrace the path from parents to parents until start node
"""
current_node=node
path= []
whilecurrent_nodeisnotNone:
path.append((current_node.pos_y, current_node.pos_x))
current_node=current_node.parent
path.reverse()
returnpath
classBidirectionalAStar:
"""
>>> bd_astar = BidirectionalAStar((0, 0), (len(grid) - 1, len(grid[0]) - 1))
>>> bd_astar.fwd_astar.start.pos == bd_astar.bwd_astar.target.pos
True
>>> bd_astar.retrace_bidirectional_path(bd_astar.fwd_astar.start,
... bd_astar.bwd_astar.start)
[(0, 0)]
>>> bd_astar.search() # doctest: +NORMALIZE_WHITESPACE
[(0, 0), (0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (2, 4),
(2, 5), (3, 5), (4, 5), (5, 5), (5, 6), (6, 6)]
"""
def__init__(self, start: TPosition, goal: TPosition) ->None:
self.fwd_astar=AStar(start, goal)
self.bwd_astar=AStar(goal, start)
self.reached=False
defsearch(self) ->list[TPosition]:
whileself.fwd_astar.open_nodesorself.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
current_fwd_node=self.fwd_astar.open_nodes.pop(0)
current_bwd_node=self.bwd_astar.open_nodes.pop(0)
ifcurrent_bwd_node.pos==current_fwd_node.pos:
returnself.retrace_bidirectional_path(
current_fwd_node, current_bwd_node
)
self.fwd_astar.closed_nodes.append(current_fwd_node)
self.bwd_astar.closed_nodes.append(current_bwd_node)
self.fwd_astar.target=current_bwd_node
self.bwd_astar.target=current_fwd_node
successors= {
self.fwd_astar: self.fwd_astar.get_successors(current_fwd_node),
self.bwd_astar: self.bwd_astar.get_successors(current_bwd_node),
}
forastarin [self.fwd_astar, self.bwd_astar]:
forchild_nodeinsuccessors[astar]:
ifchild_nodeinastar.closed_nodes:
continue
ifchild_nodenotinastar.open_nodes:
astar.open_nodes.append(child_node)
else:
# retrieve the best current path
better_node=astar.open_nodes.pop(
astar.open_nodes.index(child_node)
)
ifchild_node.g_cost<better_node.g_cost:
astar.open_nodes.append(child_node)
else:
astar.open_nodes.append(better_node)
return [self.fwd_astar.start.pos]
defretrace_bidirectional_path(
self, fwd_node: Node, bwd_node: Node
) ->list[TPosition]:
fwd_path=self.fwd_astar.retrace_path(fwd_node)
bwd_path=self.bwd_astar.retrace_path(bwd_node)
bwd_path.pop()
bwd_path.reverse()
path=fwd_path+bwd_path
returnpath
if__name__=="__main__":
# all coordinates are given in format [y,x]
init= (0, 0)
goal= (len(grid) -1, len(grid[0]) -1)
forelemingrid:
print(elem)
start_time=time.time()
a_star=AStar(init, goal)
path=a_star.search()
end_time=time.time() -start_time
print(f"AStar execution time = {end_time:f} seconds")
bd_start_time=time.time()
bidir_astar=BidirectionalAStar(init, goal)
bd_end_time=time.time() -bd_start_time
print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds")