- Notifications
You must be signed in to change notification settings - Fork 46.7k
/
Copy pathbi_directional_dijkstra.py
140 lines (114 loc) · 3.28 KB
/
bi_directional_dijkstra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
"""
Bi-directional Dijkstra's algorithm.
A bi-directional approach is an efficient and
less time consuming optimization for Dijkstra's
searching algorithm
Reference: shorturl.at/exHM7
"""
# Author: Swayam Singh (https://github.com/practice404)
fromqueueimportPriorityQueue
fromtypingimportAny
importnumpyasnp
defpass_and_relaxation(
graph: dict,
v: str,
visited_forward: set,
visited_backward: set,
cst_fwd: dict,
cst_bwd: dict,
queue: PriorityQueue,
parent: dict,
shortest_distance: float,
) ->float:
fornxt, dingraph[v]:
ifnxtinvisited_forward:
continue
old_cost_f=cst_fwd.get(nxt, np.inf)
new_cost_f=cst_fwd[v] +d
ifnew_cost_f<old_cost_f:
queue.put((new_cost_f, nxt))
cst_fwd[nxt] =new_cost_f
parent[nxt] =v
if (
nxtinvisited_backward
andcst_fwd[v] +d+cst_bwd[nxt] <shortest_distance
):
shortest_distance=cst_fwd[v] +d+cst_bwd[nxt]
returnshortest_distance
defbidirectional_dij(
source: str, destination: str, graph_forward: dict, graph_backward: dict
) ->int:
"""
Bi-directional Dijkstra's algorithm.
Returns:
shortest_path_distance (int): length of the shortest path.
Warnings:
If the destination is not reachable, function returns -1
>>> bidirectional_dij("E", "F", graph_fwd, graph_bwd)
3
"""
shortest_path_distance=-1
visited_forward=set()
visited_backward=set()
cst_fwd= {source: 0}
cst_bwd= {destination: 0}
parent_forward= {source: None}
parent_backward= {destination: None}
queue_forward: PriorityQueue[Any] =PriorityQueue()
queue_backward: PriorityQueue[Any] =PriorityQueue()
shortest_distance=np.inf
queue_forward.put((0, source))
queue_backward.put((0, destination))
ifsource==destination:
return0
whilenotqueue_forward.empty() andnotqueue_backward.empty():
_, v_fwd=queue_forward.get()
visited_forward.add(v_fwd)
_, v_bwd=queue_backward.get()
visited_backward.add(v_bwd)
shortest_distance=pass_and_relaxation(
graph_forward,
v_fwd,
visited_forward,
visited_backward,
cst_fwd,
cst_bwd,
queue_forward,
parent_forward,
shortest_distance,
)
shortest_distance=pass_and_relaxation(
graph_backward,
v_bwd,
visited_backward,
visited_forward,
cst_bwd,
cst_fwd,
queue_backward,
parent_backward,
shortest_distance,
)
ifcst_fwd[v_fwd] +cst_bwd[v_bwd] >=shortest_distance:
break
ifshortest_distance!=np.inf:
shortest_path_distance=shortest_distance
returnshortest_path_distance
graph_fwd= {
"B": [["C", 1]],
"C": [["D", 1]],
"D": [["F", 1]],
"E": [["B", 1], ["G", 2]],
"F": [],
"G": [["F", 1]],
}
graph_bwd= {
"B": [["E", 1]],
"C": [["B", 1]],
"D": [["C", 1]],
"F": [["D", 1], ["G", 1]],
"E": [[None, np.inf]],
"G": [["E", 2]],
}
if__name__=="__main__":
importdoctest
doctest.testmod()