- Notifications
You must be signed in to change notification settings - Fork 46.7k
/
Copy pathkoch_snowflake.py
115 lines (97 loc) · 4.26 KB
/
koch_snowflake.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
"""
Description
The Koch snowflake is a fractal curve and one of the earliest fractals to
have been described. The Koch snowflake can be built up iteratively, in a
sequence of stages. The first stage is an equilateral triangle, and each
successive stage is formed by adding outward bends to each side of the
previous stage, making smaller equilateral triangles.
This can be achieved through the following steps for each line:
1. divide the line segment into three segments of equal length.
2. draw an equilateral triangle that has the middle segment from step 1
as its base and points outward.
3. remove the line segment that is the base of the triangle from step 2.
(description adapted from https://en.wikipedia.org/wiki/Koch_snowflake )
(for a more detailed explanation and an implementation in the
Processing language, see https://natureofcode.com/book/chapter-8-fractals/
#84-the-koch-curve-and-the-arraylist-technique )
Requirements (pip):
- matplotlib
- numpy
"""
from __future__ importannotations
importmatplotlib.pyplotasplt
importnumpyasnp
# initial triangle of Koch snowflake
VECTOR_1=np.array([0, 0])
VECTOR_2=np.array([0.5, 0.8660254])
VECTOR_3=np.array([1, 0])
INITIAL_VECTORS= [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
# uncomment for simple Koch curve instead of Koch snowflake
# INITIAL_VECTORS = [VECTOR_1, VECTOR_3]
defiterate(initial_vectors: list[np.ndarray], steps: int) ->list[np.ndarray]:
"""
Go through the number of iterations determined by the argument "steps".
Be careful with high values (above 5) since the time to calculate increases
exponentially.
>>> iterate([np.array([0, 0]), np.array([1, 0])], 1)
[array([0, 0]), array([0.33333333, 0. ]), array([0.5 , \
0.28867513]), array([0.66666667, 0. ]), array([1, 0])]
"""
vectors=initial_vectors
for_inrange(steps):
vectors=iteration_step(vectors)
returnvectors
defiteration_step(vectors: list[np.ndarray]) ->list[np.ndarray]:
"""
Loops through each pair of adjacent vectors. Each line between two adjacent
vectors is divided into 4 segments by adding 3 additional vectors in-between
the original two vectors. The vector in the middle is constructed through a
60 degree rotation so it is bent outwards.
>>> iteration_step([np.array([0, 0]), np.array([1, 0])])
[array([0, 0]), array([0.33333333, 0. ]), array([0.5 , \
0.28867513]), array([0.66666667, 0. ]), array([1, 0])]
"""
new_vectors= []
fori, start_vectorinenumerate(vectors[:-1]):
end_vector=vectors[i+1]
new_vectors.append(start_vector)
difference_vector=end_vector-start_vector
new_vectors.append(start_vector+difference_vector/3)
new_vectors.append(
start_vector+difference_vector/3+rotate(difference_vector/3, 60)
)
new_vectors.append(start_vector+difference_vector*2/3)
new_vectors.append(vectors[-1])
returnnew_vectors
defrotate(vector: np.ndarray, angle_in_degrees: float) ->np.ndarray:
"""
Standard rotation of a 2D vector with a rotation matrix
(see https://en.wikipedia.org/wiki/Rotation_matrix )
>>> rotate(np.array([1, 0]), 60)
array([0.5 , 0.8660254])
>>> rotate(np.array([1, 0]), 90)
array([6.123234e-17, 1.000000e+00])
"""
theta=np.radians(angle_in_degrees)
c, s=np.cos(theta), np.sin(theta)
rotation_matrix=np.array(((c, -s), (s, c)))
returnnp.dot(rotation_matrix, vector)
defplot(vectors: list[np.ndarray]) ->None:
"""
Utility function to plot the vectors using matplotlib.pyplot
No doctest was implemented since this function does not have a return value
"""
# avoid stretched display of graph
axes=plt.gca()
axes.set_aspect("equal")
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
x_coordinates, y_coordinates=zip(*vectors)
plt.plot(x_coordinates, y_coordinates)
plt.show()
if__name__=="__main__":
importdoctest
doctest.testmod()
processed_vectors=iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)