- Notifications
You must be signed in to change notification settings - Fork 19.9k
/
Copy pathDES.java
250 lines (209 loc) · 11.5 KB
/
DES.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
packagecom.thealgorithms.ciphers;
/**
* This class is build to demonstrate the application of the DES-algorithm
* (https://en.wikipedia.org/wiki/Data_Encryption_Standard) on a plain English message. The supplied
* key must be in form of a 64 bit binary String.
*/
publicclassDES {
privateStringkey;
privatefinalString[] subKeys;
privatevoidsanitize(Stringkey) {
intlength = key.length();
if (length != 64) {
thrownewIllegalArgumentException("DES key must be supplied as a 64 character binary string");
}
}
DES(Stringkey) {
sanitize(key);
this.key = key;
subKeys = getSubkeys(key);
}
publicStringgetKey() {
returnthis.key;
}
publicvoidsetKey(Stringkey) {
sanitize(key);
this.key = key;
}
// Permutation table to convert initial 64-bit key to 56 bit key
privatestaticfinalint[] PC1 = {57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4};
// Lookup table used to shift the initial key, in order to generate the subkeys
privatestaticfinalint[] KEY_SHIFTS = {1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};
// Table to convert the 56 bit subkeys to 48 bit subkeys
privatestaticfinalint[] PC2 = {14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32};
// Initial permutation of each 64 but message block
privatestaticfinalint[] IP = {58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7};
// Expansion table to convert right half of message blocks from 32 bits to 48 bits
privatestaticfinalint[] EXPANSION = {32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1};
// The eight substitution boxes are defined below
privatestaticfinalint[][] S1 = {{14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7}, {0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8}, {4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0}, {15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13}};
privatestaticfinalint[][] S2 = {{15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10}, {3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5}, {0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15}, {13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9}};
privatestaticfinalint[][] S3 = {{10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8}, {13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1}, {13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7}, {1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12}};
privatestaticfinalint[][] S4 = {{7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15}, {13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9}, {10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4}, {3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14}};
privatestaticfinalint[][] S5 = {{2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9}, {14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6}, {4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14}, {11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3}};
privatestaticfinalint[][] S6 = {{12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11}, {10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8}, {9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6}, {4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13}};
privatestaticfinalint[][] S7 = {{4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1}, {13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6}, {1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2}, {6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12}};
privatestaticfinalint[][] S8 = {{13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7}, {1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2}, {7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8}, {2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11}};
privatestaticfinalint[][][] S = {S1, S2, S3, S4, S5, S6, S7, S8};
// Permutation table, used in the Feistel function post s-box usage
staticfinalint[] PERMUTATION = {16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25};
// Table used for final inversion of the message box after 16 rounds of Feistel Function
staticfinalint[] IP_INVERSE = {40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25};
privateString[] getSubkeys(StringoriginalKey) {
StringBuilderpermutedKey = newStringBuilder(); // Initial permutation of keys via pc1
inti;
intj;
for (i = 0; i < 56; i++) {
permutedKey.append(originalKey.charAt(PC1[i] - 1));
}
String[] subKeys = newString[16];
StringinitialPermutedKey = permutedKey.toString();
Stringc0 = initialPermutedKey.substring(0, 28);
Stringd0 = initialPermutedKey.substring(28);
// We will now operate on the left and right halves of the permutedKey
for (i = 0; i < 16; i++) {
StringcN = c0.substring(KEY_SHIFTS[i]) + c0.substring(0, KEY_SHIFTS[i]);
StringdN = d0.substring(KEY_SHIFTS[i]) + d0.substring(0, KEY_SHIFTS[i]);
subKeys[i] = cN + dN;
c0 = cN; // Re-assign the values to create running permutation
d0 = dN;
}
// Let us shrink the keys to 48 bits (well, characters here) using pc2
for (i = 0; i < 16; i++) {
Stringkey = subKeys[i];
permutedKey.setLength(0);
for (j = 0; j < 48; j++) {
permutedKey.append(key.charAt(PC2[j] - 1));
}
subKeys[i] = permutedKey.toString();
}
returnsubKeys;
}
privateStringxOR(Stringa, Stringb) {
inti;
intl = a.length();
StringBuilderxor = newStringBuilder();
for (i = 0; i < l; i++) {
intfirstBit = a.charAt(i) - 48; // 48 is '0' in ascii
intsecondBit = b.charAt(i) - 48;
xor.append((firstBit ^ secondBit));
}
returnxor.toString();
}
privateStringcreatePaddedString(Strings, intdesiredLength, charpad) {
inti;
intl = s.length();
StringBuilderpaddedString = newStringBuilder();
intdiff = desiredLength - l;
for (i = 0; i < diff; i++) {
paddedString.append(pad);
}
returnpaddedString.toString();
}
privateStringpad(Strings, intdesiredLength) {
returncreatePaddedString(s, desiredLength, '0') + s;
}
privateStringpadLast(Strings, intdesiredLength) {
returns + createPaddedString(s, desiredLength, '\u0000');
}
privateStringfeistel(StringmessageBlock, Stringkey) {
inti;
StringBuilderexpandedKey = newStringBuilder();
for (i = 0; i < 48; i++) {
expandedKey.append(messageBlock.charAt(EXPANSION[i] - 1));
}
StringmixedKey = xOR(expandedKey.toString(), key);
StringBuildersubstitutedString = newStringBuilder();
// Let us now use the s-boxes to transform each 6 bit (length here) block to 4 bits
for (i = 0; i < 48; i += 6) {
Stringblock = mixedKey.substring(i, i + 6);
introw = (block.charAt(0) - 48) * 2 + (block.charAt(5) - 48);
intcol = (block.charAt(1) - 48) * 8 + (block.charAt(2) - 48) * 4 + (block.charAt(3) - 48) * 2 + (block.charAt(4) - 48);
StringsubstitutedBlock = pad(Integer.toBinaryString(S[i / 6][row][col]), 4);
substitutedString.append(substitutedBlock);
}
StringBuilderpermutedString = newStringBuilder();
for (i = 0; i < 32; i++) {
permutedString.append(substitutedString.charAt(PERMUTATION[i] - 1));
}
returnpermutedString.toString();
}
privateStringencryptBlock(Stringmessage, String[] keys) {
StringBuilderpermutedMessage = newStringBuilder();
inti;
for (i = 0; i < 64; i++) {
permutedMessage.append(message.charAt(IP[i] - 1));
}
Stringe0 = permutedMessage.substring(0, 32);
Stringf0 = permutedMessage.substring(32);
// Iterate 16 times
for (i = 0; i < 16; i++) {
StringeN = f0; // Previous Right block
StringfN = xOR(e0, feistel(f0, keys[i]));
e0 = eN;
f0 = fN;
}
StringcombinedBlock = f0 + e0; // Reverse the 16th block
permutedMessage.setLength(0);
for (i = 0; i < 64; i++) {
permutedMessage.append(combinedBlock.charAt(IP_INVERSE[i] - 1));
}
returnpermutedMessage.toString();
}
// To decode, we follow the same process as encoding, but with reversed keys
privateStringdecryptBlock(Stringmessage, String[] keys) {
String[] reversedKeys = newString[keys.length];
for (inti = 0; i < keys.length; i++) {
reversedKeys[i] = keys[keys.length - i - 1];
}
returnencryptBlock(message, reversedKeys);
}
/**
* @param message Message to be encrypted
* @return The encrypted message, as a binary string
*/
publicStringencrypt(Stringmessage) {
StringBuilderencryptedMessage = newStringBuilder();
intl = message.length();
inti;
intj;
if (l % 8 != 0) {
intdesiredLength = (l / 8 + 1) * 8;
l = desiredLength;
message = padLast(message, desiredLength);
}
for (i = 0; i < l; i += 8) {
Stringblock = message.substring(i, i + 8);
StringBuilderbitBlock = newStringBuilder();
byte[] bytes = block.getBytes();
for (j = 0; j < 8; j++) {
bitBlock.append(pad(Integer.toBinaryString(bytes[j]), 8));
}
encryptedMessage.append(encryptBlock(bitBlock.toString(), subKeys));
}
returnencryptedMessage.toString();
}
/**
* @param message The encrypted string. Expects it to be a multiple of 64 bits, in binary format
* @return The decrypted String, in plain English
*/
publicStringdecrypt(Stringmessage) {
StringBuilderdecryptedMessage = newStringBuilder();
intl = message.length();
inti;
intj;
if (l % 64 != 0) {
thrownewIllegalArgumentException("Encrypted message should be a multiple of 64 characters in length");
}
for (i = 0; i < l; i += 64) {
Stringblock = message.substring(i, i + 64);
Stringresult = decryptBlock(block, subKeys);
byte[] res = newbyte[8];
for (j = 0; j < 64; j += 8) {
res[j / 8] = (byte) Integer.parseInt(result.substring(j, j + 8), 2);
}
decryptedMessage.append(newString(res));
}
returndecryptedMessage.toString().replace("\0", ""); // Get rid of the null bytes used for padding
}
}