- Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathcgelq.c
869 lines (803 loc) · 24.6 KB
/
cgelq.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
#include<math.h>
#include<stdlib.h>
#include<string.h>
#include<stdio.h>
#include<complex.h>
#ifdefcomplex
#undef complex
#endif
#ifdefI
#undef I
#endif
#if defined(_WIN64)
typedeflong longBLASLONG;
typedefunsigned long longBLASULONG;
#else
typedeflongBLASLONG;
typedefunsigned longBLASULONG;
#endif
#ifdefLAPACK_ILP64
typedefBLASLONGblasint;
#if defined(_WIN64)
#defineblasabs(x) llabs(x)
#else
#defineblasabs(x) labs(x)
#endif
#else
typedefintblasint;
#defineblasabs(x) abs(x)
#endif
typedefblasintinteger;
typedefunsigned intuinteger;
typedefchar*address;
typedefshort intshortint;
typedeffloatreal;
typedefdoubledoublereal;
typedefstruct { realr, i; } complex;
typedefstruct { doublerealr, i; } doublecomplex;
#ifdef_MSC_VER
staticinline_FcomplexCf(complex*z) {_Fcomplexzz={z->r , z->i}; returnzz;}
staticinline_DcomplexCd(doublecomplex*z) {_Dcomplexzz={z->r , z->i};returnzz;}
staticinline_Fcomplex*_pCf(complex*z) {return (_Fcomplex*)z;}
staticinline_Dcomplex*_pCd(doublecomplex*z) {return (_Dcomplex*)z;}
#else
staticinline_ComplexfloatCf(complex*z) {returnz->r+z->i*_Complex_I;}
staticinline_ComplexdoubleCd(doublecomplex*z) {returnz->r+z->i*_Complex_I;}
staticinline_Complexfloat*_pCf(complex*z) {return (_Complexfloat*)z;}
staticinline_Complexdouble*_pCd(doublecomplex*z) {return (_Complexdouble*)z;}
#endif
#definepCf(z) (*_pCf(z))
#definepCd(z) (*_pCd(z))
typedefintlogical;
typedefshort intshortlogical;
typedefcharlogical1;
typedefcharinteger1;
#defineTRUE_ (1)
#defineFALSE_ (0)
/* Extern is for use with -E */
#ifndefExtern
#defineExtern extern
#endif
/* I/O stuff */
typedefintflag;
typedefintftnlen;
typedefintftnint;
/*external read, write*/
typedefstruct
{ flagcierr;
ftnintciunit;
flagciend;
char*cifmt;
ftnintcirec;
} cilist;
/*internal read, write*/
typedefstruct
{ flagicierr;
char*iciunit;
flagiciend;
char*icifmt;
ftninticirlen;
ftninticirnum;
} icilist;
/*open*/
typedefstruct
{ flagoerr;
ftnintounit;
char*ofnm;
ftnlenofnmlen;
char*osta;
char*oacc;
char*ofm;
ftnintorl;
char*oblnk;
} olist;
/*close*/
typedefstruct
{ flagcerr;
ftnintcunit;
char*csta;
} cllist;
/*rewind, backspace, endfile*/
typedefstruct
{ flagaerr;
ftnintaunit;
} alist;
/* inquire */
typedefstruct
{ flaginerr;
ftnintinunit;
char*infile;
ftnleninfilen;
ftnint*inex; /*parameters in standard's order*/
ftnint*inopen;
ftnint*innum;
ftnint*innamed;
char*inname;
ftnleninnamlen;
char*inacc;
ftnleninacclen;
char*inseq;
ftnleninseqlen;
char*indir;
ftnlenindirlen;
char*infmt;
ftnleninfmtlen;
char*inform;
ftnintinformlen;
char*inunf;
ftnleninunflen;
ftnint*inrecl;
ftnint*innrec;
char*inblank;
ftnleninblanklen;
} inlist;
#defineVOID void
unionMultitype { /* for multiple entry points */
integer1g;
shortinth;
integeri;
/* longint j; */
realr;
doublereald;
complexc;
doublecomplexz;
};
typedefunionMultitypeMultitype;
structVardesc { /* for Namelist */
char*name;
char*addr;
ftnlen*dims;
inttype;
};
typedefstructVardescVardesc;
structNamelist {
char*name;
Vardesc**vars;
intnvars;
};
typedefstructNamelistNamelist;
#defineabs(x) ((x) >= 0 ? (x) : -(x))
#definedabs(x) (fabs(x))
#definef2cmin(a,b) ((a) <= (b) ? (a) : (b))
#definef2cmax(a,b) ((a) >= (b) ? (a) : (b))
#definedmin(a,b) (f2cmin(a,b))
#definedmax(a,b) (f2cmax(a,b))
#definebit_test(a,b) ((a) >> (b) & 1)
#definebit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#definebit_set(a,b) ((a) | ((uinteger)1 << (b)))
#defineabort_() { sig_die("Fortran abort routine called", 1); }
#definec_abs(z) (cabsf(Cf(z)))
#definec_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef_MSC_VER
#definec_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#definez_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#definec_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#definez_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#definec_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#definec_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#definec_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#definec_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#defined_abs(x) (fabs(*(x)))
#defined_acos(x) (acos(*(x)))
#defined_asin(x) (asin(*(x)))
#defined_atan(x) (atan(*(x)))
#defined_atn2(x, y) (atan2(*(x),*(y)))
#defined_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#definer_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#defined_cos(x) (cos(*(x)))
#defined_cosh(x) (cosh(*(x)))
#defined_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#defined_exp(x) (exp(*(x)))
#defined_imag(z) (cimag(Cd(z)))
#definer_imag(z) (cimagf(Cf(z)))
#defined_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#definer_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#defined_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#definer_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#defined_log(x) (log(*(x)))
#defined_mod(x, y) (fmod(*(x), *(y)))
#defineu_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#defined_nint(x) u_nint(*(x))
#defineu_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#defined_sign(a,b) u_sign(*(a),*(b))
#definer_sign(a,b) u_sign(*(a),*(b))
#defined_sin(x) (sin(*(x)))
#defined_sinh(x) (sinh(*(x)))
#defined_sqrt(x) (sqrt(*(x)))
#defined_tan(x) (tan(*(x)))
#defined_tanh(x) (tanh(*(x)))
#definei_abs(x) abs(*(x))
#definei_dnnt(x) ((integer)u_nint(*(x)))
#definei_len(s, n) (n)
#definei_nint(x) ((integer)u_nint(*(x)))
#definei_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#definepow_dd(ap, bp) ( pow(*(ap), *(bp)))
#definepow_si(B,E) spow_ui(*(B),*(E))
#definepow_ri(B,E) spow_ui(*(B),*(E))
#definepow_di(B,E) dpow_ui(*(B),*(E))
#definepow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#definepow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#definepow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#defines_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#defines_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#defines_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#definesig_die(s, kill) { exit(1); }
#defines_stop(s, n) {exit(0);}
staticcharjunk[] ="\n@(#)LIBF77 VERSION 19990503\n";
#definez_abs(z) (cabs(Cd(z)))
#definez_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#definez_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#definemyexit_() break;
#definemycycle() continue;
#definemyceiling(w) {ceil(w)}
#definemyhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#definemymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#defineF2C_proc_par_types 1
#ifdef__cplusplus
typedeflogical (*L_fp)(...);
#else
typedeflogical (*L_fp)();
#endif
staticfloatspow_ui(floatx, integern) {
floatpow=1.0; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x=1/x;
for(u=n; ; ) {
if(u&01) pow *= x;
if(u >>= 1) x *= x;
elsebreak;
}
}
returnpow;
}
staticdoubledpow_ui(doublex, integern) {
doublepow=1.0; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x=1/x;
for(u=n; ; ) {
if(u&01) pow *= x;
if(u >>= 1) x *= x;
elsebreak;
}
}
returnpow;
}
#ifdef_MSC_VER
static_Fcomplexcpow_ui(complexx, integern) {
complexpow={1.0,0.0}; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x.r=1/x.r, x.i=1/x.i;
for(u=n; ; ) {
if(u&01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
elsebreak;
}
}
_Fcomplexp={pow.r, pow.i};
returnp;
}
#else
static_Complexfloatcpow_ui(_Complexfloatx, integern) {
_Complexfloatpow=1.0; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x=1/x;
for(u=n; ; ) {
if(u&01) pow *= x;
if(u >>= 1) x *= x;
elsebreak;
}
}
returnpow;
}
#endif
#ifdef_MSC_VER
static_Dcomplexzpow_ui(_Dcomplexx, integern) {
_Dcomplexpow={1.0,0.0}; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x._Val[0] =1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u=n; ; ) {
if(u&01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
elsebreak;
}
}
_Dcomplexp= {pow._Val[0], pow._Val[1]};
returnp;
}
#else
static_Complexdoublezpow_ui(_Complexdoublex, integern) {
_Complexdoublepow=1.0; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x=1/x;
for(u=n; ; ) {
if(u&01) pow *= x;
if(u >>= 1) x *= x;
elsebreak;
}
}
returnpow;
}
#endif
staticintegerpow_ii(integerx, integern) {
integerpow; unsigned long intu;
if (n <= 0) {
if (n==0||x==1) pow=1;
elseif (x!=-1) pow=x==0 ? 1/x : 0;
elsen=-n;
}
if ((n>0) || !(n==0||x==1||x!=-1)) {
u=n;
for(pow=1; ; ) {
if(u&01) pow *= x;
if(u >>= 1) x *= x;
elsebreak;
}
}
returnpow;
}
staticintegerdmaxloc_(double*w, integers, integere, integer*n)
{
doublem; integeri, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
returnmi-s+1;
}
staticintegersmaxloc_(float*w, integers, integere, integer*n)
{
floatm; integeri, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
returnmi-s+1;
}
staticinlinevoidcdotc_(complex*z, integer*n_, complex*x, integer*incx_, complex*y, integer*incy_) {
integern=*n_, incx=*incx_, incy=*incy_, i;
#ifdef_MSC_VER
_Fcomplexzdotc= {0.0, 0.0};
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=conjf(Cf(&x[i]))._Val[0] *Cf(&y[i])._Val[0];
zdotc._Val[1] +=conjf(Cf(&x[i]))._Val[1] *Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=conjf(Cf(&x[i*incx]))._Val[0] *Cf(&y[i*incy])._Val[0];
zdotc._Val[1] +=conjf(Cf(&x[i*incx]))._Val[1] *Cf(&y[i*incy])._Val[1];
}
}
pCf(z) =zdotc;
}
#else
_Complexfloatzdotc=0.0;
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=conjf(Cf(&x[i])) *Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=conjf(Cf(&x[i*incx])) *Cf(&y[i*incy]);
}
}
pCf(z) =zdotc;
}
#endif
staticinlinevoidzdotc_(doublecomplex*z, integer*n_, doublecomplex*x, integer*incx_, doublecomplex*y, integer*incy_) {
integern=*n_, incx=*incx_, incy=*incy_, i;
#ifdef_MSC_VER
_Dcomplexzdotc= {0.0, 0.0};
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=conj(Cd(&x[i]))._Val[0] *Cd(&y[i])._Val[0];
zdotc._Val[1] +=conj(Cd(&x[i]))._Val[1] *Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=conj(Cd(&x[i*incx]))._Val[0] *Cd(&y[i*incy])._Val[0];
zdotc._Val[1] +=conj(Cd(&x[i*incx]))._Val[1] *Cd(&y[i*incy])._Val[1];
}
}
pCd(z) =zdotc;
}
#else
_Complexdoublezdotc=0.0;
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=conj(Cd(&x[i])) *Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=conj(Cd(&x[i*incx])) *Cd(&y[i*incy]);
}
}
pCd(z) =zdotc;
}
#endif
staticinlinevoidcdotu_(complex*z, integer*n_, complex*x, integer*incx_, complex*y, integer*incy_) {
integern=*n_, incx=*incx_, incy=*incy_, i;
#ifdef_MSC_VER
_Fcomplexzdotc= {0.0, 0.0};
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=Cf(&x[i])._Val[0] *Cf(&y[i])._Val[0];
zdotc._Val[1] +=Cf(&x[i])._Val[1] *Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=Cf(&x[i*incx])._Val[0] *Cf(&y[i*incy])._Val[0];
zdotc._Val[1] +=Cf(&x[i*incx])._Val[1] *Cf(&y[i*incy])._Val[1];
}
}
pCf(z) =zdotc;
}
#else
_Complexfloatzdotc=0.0;
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=Cf(&x[i]) *Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=Cf(&x[i*incx]) *Cf(&y[i*incy]);
}
}
pCf(z) =zdotc;
}
#endif
staticinlinevoidzdotu_(doublecomplex*z, integer*n_, doublecomplex*x, integer*incx_, doublecomplex*y, integer*incy_) {
integern=*n_, incx=*incx_, incy=*incy_, i;
#ifdef_MSC_VER
_Dcomplexzdotc= {0.0, 0.0};
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=Cd(&x[i])._Val[0] *Cd(&y[i])._Val[0];
zdotc._Val[1] +=Cd(&x[i])._Val[1] *Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=Cd(&x[i*incx])._Val[0] *Cd(&y[i*incy])._Val[0];
zdotc._Val[1] +=Cd(&x[i*incx])._Val[1] *Cd(&y[i*incy])._Val[1];
}
}
pCd(z) =zdotc;
}
#else
_Complexdoublezdotc=0.0;
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=Cd(&x[i]) *Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=Cd(&x[i*incx]) *Cd(&y[i*incy]);
}
}
pCd(z) =zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
staticintegerc__1=1;
staticintegerc_n1=-1;
staticintegerc__2=2;
/* > \brief \b CGELQ */
/* Definition: */
/* =========== */
/* SUBROUTINE CGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, */
/* INFO ) */
/* INTEGER INFO, LDA, M, N, TSIZE, LWORK */
/* COMPLEX A( LDA, * ), T( * ), WORK( * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGELQ computes an LQ factorization of a complex M-by-N matrix A: */
/* > */
/* > A = ( L 0 ) * Q */
/* > */
/* > where: */
/* > */
/* > Q is a N-by-N orthogonal matrix; */
/* > L is a lower-triangular M-by-M matrix; */
/* > 0 is a M-by-(N-M) zero matrix, if M < N. */
/* > */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, the elements on and below the diagonal of the array */
/* > contain the M-by-f2cmin(M,N) lower trapezoidal matrix L */
/* > (L is lower triangular if M <= N); */
/* > the elements above the diagonal are used to store part of the */
/* > data structure to represent Q. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] T */
/* > \verbatim */
/* > T is COMPLEX array, dimension (MAX(5,TSIZE)) */
/* > On exit, if INFO = 0, T(1) returns optimal (or either minimal */
/* > or optimal, if query is assumed) TSIZE. See TSIZE for details. */
/* > Remaining T contains part of the data structure used to represent Q. */
/* > If one wants to apply or construct Q, then one needs to keep T */
/* > (in addition to A) and pass it to further subroutines. */
/* > \endverbatim */
/* > */
/* > \param[in] TSIZE */
/* > \verbatim */
/* > TSIZE is INTEGER */
/* > If TSIZE >= 5, the dimension of the array T. */
/* > If TSIZE = -1 or -2, then a workspace query is assumed. The routine */
/* > only calculates the sizes of the T and WORK arrays, returns these */
/* > values as the first entries of the T and WORK arrays, and no error */
/* > message related to T or WORK is issued by XERBLA. */
/* > If TSIZE = -1, the routine calculates optimal size of T for the */
/* > optimum performance and returns this value in T(1). */
/* > If TSIZE = -2, the routine calculates minimal size of T and */
/* > returns this value in T(1). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > (workspace) COMPLEX array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) contains optimal (or either minimal */
/* > or optimal, if query was assumed) LWORK. */
/* > See LWORK for details. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. */
/* > If LWORK = -1 or -2, then a workspace query is assumed. The routine */
/* > only calculates the sizes of the T and WORK arrays, returns these */
/* > values as the first entries of the T and WORK arrays, and no error */
/* > message related to T or WORK is issued by XERBLA. */
/* > If LWORK = -1, the routine calculates optimal size of WORK for the */
/* > optimal performance and returns this value in WORK(1). */
/* > If LWORK = -2, the routine calculates minimal size of WORK and */
/* > returns this value in WORK(1). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \par Further Details */
/* ==================== */
/* > */
/* > \verbatim */
/* > */
/* > The goal of the interface is to give maximum freedom to the developers for */
/* > creating any LQ factorization algorithm they wish. The triangular */
/* > (trapezoidal) L has to be stored in the lower part of A. The lower part of A */
/* > and the array T can be used to store any relevant information for applying or */
/* > constructing the Q factor. The WORK array can safely be discarded after exit. */
/* > */
/* > Caution: One should not expect the sizes of T and WORK to be the same from one */
/* > LAPACK implementation to the other, or even from one execution to the other. */
/* > A workspace query (for T and WORK) is needed at each execution. However, */
/* > for a given execution, the size of T and WORK are fixed and will not change */
/* > from one query to the next. */
/* > */
/* > \endverbatim */
/* > */
/* > \par Further Details particular to this LAPACK implementation: */
/* ============================================================== */
/* > */
/* > \verbatim */
/* > */
/* > These details are particular for this LAPACK implementation. Users should not */
/* > take them for granted. These details may change in the future, and are not likely */
/* > true for another LAPACK implementation. These details are relevant if one wants */
/* > to try to understand the code. They are not part of the interface. */
/* > */
/* > In this version, */
/* > */
/* > T(2): row block size (MB) */
/* > T(3): column block size (NB) */
/* > T(6:TSIZE): data structure needed for Q, computed by */
/* > CLASWLQ or CGELQT */
/* > */
/* > Depending on the matrix dimensions M and N, and row and column */
/* > block sizes MB and NB returned by ILAENV, CGELQ will use either */
/* > CLASWLQ (if the matrix is short-and-wide) or CGELQT to compute */
/* > the LQ factorization. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */voidcgelq_(integer*m, integer*n, complex*a, integer*lda,
complex*t, integer*tsize, complex*work, integer*lwork, integer*
info)
{
/* System generated locals */
integera_dim1, a_offset, i__1, i__2;
/* Local variables */
logicalmint, minw;
integerlwmin, lwreq, lwopt, mb, nb, nblcks;
extern/* Subroutine */intxerbla_(char*, integer*, ftnlen);
externintegerilaenv_(integer*, char*, char*, integer*, integer*,
integer*, integer*, ftnlen, ftnlen);
extern/* Subroutine */voidcgelqt_(integer*, integer*, integer*,
complex*, integer*, complex*, integer*, complex*, integer*);
logicallminws, lquery;
integermintsz;
extern/* Subroutine */voidclaswlq_(integer*, integer*, integer*,
integer*, complex*, integer*, complex*, integer*, complex*,
integer*, integer*);
/* -- LAPACK computational routine (version 3.9.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- */
/* November 2019 */
/* ===================================================================== */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1=*lda;
a_offset=1+a_dim1*1;
a-=a_offset;
--t;
--work;
/* Function Body */
*info=0;
lquery=*tsize==-1||*tsize==-2||*lwork==-1||*lwork==-2;
mint=FALSE_;
minw=FALSE_;
if (*tsize==-2||*lwork==-2) {
if (*tsize!=-1) {
mint=TRUE_;
}
if (*lwork!=-1) {
minw=TRUE_;
}
}
/* Determine the block size */
if (f2cmin(*m,*n) >0) {
mb=ilaenv_(&c__1, "CGELQ ", " ", m, n, &c__1, &c_n1, (ftnlen)6, (
ftnlen)1);
nb=ilaenv_(&c__1, "CGELQ ", " ", m, n, &c__2, &c_n1, (ftnlen)6, (
ftnlen)1);
} else {
mb=1;
nb=*n;
}
if (mb>f2cmin(*m,*n) ||mb<1) {
mb=1;
}
if (nb>*n||nb <= *m) {
nb=*n;
}
mintsz=*m+5;
if (nb>*m&&*n>*m) {
if ((*n-*m) % (nb-*m) ==0) {
nblcks= (*n-*m) / (nb-*m);
} else {
nblcks= (*n-*m) / (nb-*m) +1;
}
} else {
nblcks=1;
}
/* Determine if the workspace size satisfies minimal size */
if (*n <= *m||nb <= *m||nb >= *n) {
lwmin=f2cmax(1,*n);
/* Computing MAX */
i__1=1, i__2=mb**n;
lwopt=f2cmax(i__1,i__2);
} else {
lwmin=f2cmax(1,*m);
/* Computing MAX */
i__1=1, i__2=mb**m;
lwopt=f2cmax(i__1,i__2);
}
lminws=FALSE_;
/* Computing MAX */
i__1=1, i__2=mb**m*nblcks+5;
if ((*tsize<f2cmax(i__1,i__2) ||*lwork<lwopt) &&*lwork >= lwmin&&*
tsize >= mintsz&& ! lquery) {
/* Computing MAX */
i__1=1, i__2=mb**m*nblcks+5;
if (*tsize<f2cmax(i__1,i__2)) {
lminws=TRUE_;
mb=1;
nb=*n;
}
if (*lwork<lwopt) {
lminws=TRUE_;
mb=1;
}
}
if (*n <= *m||nb <= *m||nb >= *n) {
/* Computing MAX */
i__1=1, i__2=mb**n;
lwreq=f2cmax(i__1,i__2);
} else {
/* Computing MAX */
i__1=1, i__2=mb**m;
lwreq=f2cmax(i__1,i__2);
}
if (*m<0) {
*info=-1;
} elseif (*n<0) {
*info=-2;
} elseif (*lda<f2cmax(1,*m)) {
*info=-4;
} else/* if(complicated condition) */ {
/* Computing MAX */
i__1=1, i__2=mb**m*nblcks+5;
if (*tsize<f2cmax(i__1,i__2) && ! lquery&& ! lminws) {
*info=-6;
} elseif (*lwork<lwreq&& ! lquery&& ! lminws) {
*info=-8;
}
}
if (*info==0) {
if (mint) {
t[1].r= (real) mintsz, t[1].i=0.f;
} else {
i__1=mb**m*nblcks+5;
t[1].r= (real) i__1, t[1].i=0.f;
}
t[2].r= (real) mb, t[2].i=0.f;
t[3].r= (real) nb, t[3].i=0.f;
if (minw) {
work[1].r= (real) lwmin, work[1].i=0.f;
} else {
work[1].r= (real) lwreq, work[1].i=0.f;
}
}
if (*info!=0) {
i__1=-(*info);
xerbla_("CGELQ", &i__1, (ftnlen)5);
return;
} elseif (lquery) {
return;
}
/* Quick return if possible */
if (f2cmin(*m,*n) ==0) {
return;
}
/* The LQ Decomposition */
if (*n <= *m||nb <= *m||nb >= *n) {
cgelqt_(m, n, &mb, &a[a_offset], lda, &t[6], &mb, &work[1], info);
} else {
claswlq_(m, n, &mb, &nb, &a[a_offset], lda, &t[6], &mb, &work[1],
lwork, info);
}
work[1].r= (real) lwreq, work[1].i=0.f;
return;
/* End of CGELQ */
} /* cgelq_ */