- Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathcgbsvx.c
1297 lines (1205 loc) · 40.2 KB
/
cgbsvx.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include<math.h>
#include<stdlib.h>
#include<string.h>
#include<stdio.h>
#include<complex.h>
#ifdefcomplex
#undef complex
#endif
#ifdefI
#undef I
#endif
#if defined(_WIN64)
typedeflong longBLASLONG;
typedefunsigned long longBLASULONG;
#else
typedeflongBLASLONG;
typedefunsigned longBLASULONG;
#endif
#ifdefLAPACK_ILP64
typedefBLASLONGblasint;
#if defined(_WIN64)
#defineblasabs(x) llabs(x)
#else
#defineblasabs(x) labs(x)
#endif
#else
typedefintblasint;
#defineblasabs(x) abs(x)
#endif
typedefblasintinteger;
typedefunsigned intuinteger;
typedefchar*address;
typedefshort intshortint;
typedeffloatreal;
typedefdoubledoublereal;
typedefstruct { realr, i; } complex;
typedefstruct { doublerealr, i; } doublecomplex;
#ifdef_MSC_VER
staticinline_FcomplexCf(complex*z) {_Fcomplexzz={z->r , z->i}; returnzz;}
staticinline_DcomplexCd(doublecomplex*z) {_Dcomplexzz={z->r , z->i};returnzz;}
staticinline_Fcomplex*_pCf(complex*z) {return (_Fcomplex*)z;}
staticinline_Dcomplex*_pCd(doublecomplex*z) {return (_Dcomplex*)z;}
#else
staticinline_ComplexfloatCf(complex*z) {returnz->r+z->i*_Complex_I;}
staticinline_ComplexdoubleCd(doublecomplex*z) {returnz->r+z->i*_Complex_I;}
staticinline_Complexfloat*_pCf(complex*z) {return (_Complexfloat*)z;}
staticinline_Complexdouble*_pCd(doublecomplex*z) {return (_Complexdouble*)z;}
#endif
#definepCf(z) (*_pCf(z))
#definepCd(z) (*_pCd(z))
typedefintlogical;
typedefshort intshortlogical;
typedefcharlogical1;
typedefcharinteger1;
#defineTRUE_ (1)
#defineFALSE_ (0)
/* Extern is for use with -E */
#ifndefExtern
#defineExtern extern
#endif
/* I/O stuff */
typedefintflag;
typedefintftnlen;
typedefintftnint;
/*external read, write*/
typedefstruct
{ flagcierr;
ftnintciunit;
flagciend;
char*cifmt;
ftnintcirec;
} cilist;
/*internal read, write*/
typedefstruct
{ flagicierr;
char*iciunit;
flagiciend;
char*icifmt;
ftninticirlen;
ftninticirnum;
} icilist;
/*open*/
typedefstruct
{ flagoerr;
ftnintounit;
char*ofnm;
ftnlenofnmlen;
char*osta;
char*oacc;
char*ofm;
ftnintorl;
char*oblnk;
} olist;
/*close*/
typedefstruct
{ flagcerr;
ftnintcunit;
char*csta;
} cllist;
/*rewind, backspace, endfile*/
typedefstruct
{ flagaerr;
ftnintaunit;
} alist;
/* inquire */
typedefstruct
{ flaginerr;
ftnintinunit;
char*infile;
ftnleninfilen;
ftnint*inex; /*parameters in standard's order*/
ftnint*inopen;
ftnint*innum;
ftnint*innamed;
char*inname;
ftnleninnamlen;
char*inacc;
ftnleninacclen;
char*inseq;
ftnleninseqlen;
char*indir;
ftnlenindirlen;
char*infmt;
ftnleninfmtlen;
char*inform;
ftnintinformlen;
char*inunf;
ftnleninunflen;
ftnint*inrecl;
ftnint*innrec;
char*inblank;
ftnleninblanklen;
} inlist;
#defineVOID void
unionMultitype { /* for multiple entry points */
integer1g;
shortinth;
integeri;
/* longint j; */
realr;
doublereald;
complexc;
doublecomplexz;
};
typedefunionMultitypeMultitype;
structVardesc { /* for Namelist */
char*name;
char*addr;
ftnlen*dims;
inttype;
};
typedefstructVardescVardesc;
structNamelist {
char*name;
Vardesc**vars;
intnvars;
};
typedefstructNamelistNamelist;
#defineabs(x) ((x) >= 0 ? (x) : -(x))
#definedabs(x) (fabs(x))
#definef2cmin(a,b) ((a) <= (b) ? (a) : (b))
#definef2cmax(a,b) ((a) >= (b) ? (a) : (b))
#definedmin(a,b) (f2cmin(a,b))
#definedmax(a,b) (f2cmax(a,b))
#definebit_test(a,b) ((a) >> (b) & 1)
#definebit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#definebit_set(a,b) ((a) | ((uinteger)1 << (b)))
#defineabort_() { sig_die("Fortran abort routine called", 1); }
#definec_abs(z) (cabsf(Cf(z)))
#definec_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef_MSC_VER
#definec_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#definez_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#definec_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#definez_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#definec_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#definec_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#definec_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#definec_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#defined_abs(x) (fabs(*(x)))
#defined_acos(x) (acos(*(x)))
#defined_asin(x) (asin(*(x)))
#defined_atan(x) (atan(*(x)))
#defined_atn2(x, y) (atan2(*(x),*(y)))
#defined_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#definer_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#defined_cos(x) (cos(*(x)))
#defined_cosh(x) (cosh(*(x)))
#defined_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#defined_exp(x) (exp(*(x)))
#defined_imag(z) (cimag(Cd(z)))
#definer_imag(z) (cimagf(Cf(z)))
#defined_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#definer_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#defined_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#definer_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#defined_log(x) (log(*(x)))
#defined_mod(x, y) (fmod(*(x), *(y)))
#defineu_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#defined_nint(x) u_nint(*(x))
#defineu_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#defined_sign(a,b) u_sign(*(a),*(b))
#definer_sign(a,b) u_sign(*(a),*(b))
#defined_sin(x) (sin(*(x)))
#defined_sinh(x) (sinh(*(x)))
#defined_sqrt(x) (sqrt(*(x)))
#defined_tan(x) (tan(*(x)))
#defined_tanh(x) (tanh(*(x)))
#definei_abs(x) abs(*(x))
#definei_dnnt(x) ((integer)u_nint(*(x)))
#definei_len(s, n) (n)
#definei_nint(x) ((integer)u_nint(*(x)))
#definei_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#definepow_dd(ap, bp) ( pow(*(ap), *(bp)))
#definepow_si(B,E) spow_ui(*(B),*(E))
#definepow_ri(B,E) spow_ui(*(B),*(E))
#definepow_di(B,E) dpow_ui(*(B),*(E))
#definepow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#definepow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#definepow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#defines_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#defines_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#defines_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#definesig_die(s, kill) { exit(1); }
#defines_stop(s, n) {exit(0);}
staticcharjunk[] ="\n@(#)LIBF77 VERSION 19990503\n";
#definez_abs(z) (cabs(Cd(z)))
#definez_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#definez_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#definemyexit_() break;
#definemycycle() continue;
#definemyceiling(w) {ceil(w)}
#definemyhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#definemymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#defineF2C_proc_par_types 1
#ifdef__cplusplus
typedeflogical (*L_fp)(...);
#else
typedeflogical (*L_fp)();
#endif
staticfloatspow_ui(floatx, integern) {
floatpow=1.0; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x=1/x;
for(u=n; ; ) {
if(u&01) pow *= x;
if(u >>= 1) x *= x;
elsebreak;
}
}
returnpow;
}
staticdoubledpow_ui(doublex, integern) {
doublepow=1.0; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x=1/x;
for(u=n; ; ) {
if(u&01) pow *= x;
if(u >>= 1) x *= x;
elsebreak;
}
}
returnpow;
}
#ifdef_MSC_VER
static_Fcomplexcpow_ui(complexx, integern) {
complexpow={1.0,0.0}; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x.r=1/x.r, x.i=1/x.i;
for(u=n; ; ) {
if(u&01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
elsebreak;
}
}
_Fcomplexp={pow.r, pow.i};
returnp;
}
#else
static_Complexfloatcpow_ui(_Complexfloatx, integern) {
_Complexfloatpow=1.0; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x=1/x;
for(u=n; ; ) {
if(u&01) pow *= x;
if(u >>= 1) x *= x;
elsebreak;
}
}
returnpow;
}
#endif
#ifdef_MSC_VER
static_Dcomplexzpow_ui(_Dcomplexx, integern) {
_Dcomplexpow={1.0,0.0}; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x._Val[0] =1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u=n; ; ) {
if(u&01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
elsebreak;
}
}
_Dcomplexp= {pow._Val[0], pow._Val[1]};
returnp;
}
#else
static_Complexdoublezpow_ui(_Complexdoublex, integern) {
_Complexdoublepow=1.0; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x=1/x;
for(u=n; ; ) {
if(u&01) pow *= x;
if(u >>= 1) x *= x;
elsebreak;
}
}
returnpow;
}
#endif
staticintegerpow_ii(integerx, integern) {
integerpow; unsigned long intu;
if (n <= 0) {
if (n==0||x==1) pow=1;
elseif (x!=-1) pow=x==0 ? 1/x : 0;
elsen=-n;
}
if ((n>0) || !(n==0||x==1||x!=-1)) {
u=n;
for(pow=1; ; ) {
if(u&01) pow *= x;
if(u >>= 1) x *= x;
elsebreak;
}
}
returnpow;
}
staticintegerdmaxloc_(double*w, integers, integere, integer*n)
{
doublem; integeri, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
returnmi-s+1;
}
staticintegersmaxloc_(float*w, integers, integere, integer*n)
{
floatm; integeri, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
returnmi-s+1;
}
staticinlinevoidcdotc_(complex*z, integer*n_, complex*x, integer*incx_, complex*y, integer*incy_) {
integern=*n_, incx=*incx_, incy=*incy_, i;
#ifdef_MSC_VER
_Fcomplexzdotc= {0.0, 0.0};
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=conjf(Cf(&x[i]))._Val[0] *Cf(&y[i])._Val[0];
zdotc._Val[1] +=conjf(Cf(&x[i]))._Val[1] *Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=conjf(Cf(&x[i*incx]))._Val[0] *Cf(&y[i*incy])._Val[0];
zdotc._Val[1] +=conjf(Cf(&x[i*incx]))._Val[1] *Cf(&y[i*incy])._Val[1];
}
}
pCf(z) =zdotc;
}
#else
_Complexfloatzdotc=0.0;
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=conjf(Cf(&x[i])) *Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=conjf(Cf(&x[i*incx])) *Cf(&y[i*incy]);
}
}
pCf(z) =zdotc;
}
#endif
staticinlinevoidzdotc_(doublecomplex*z, integer*n_, doublecomplex*x, integer*incx_, doublecomplex*y, integer*incy_) {
integern=*n_, incx=*incx_, incy=*incy_, i;
#ifdef_MSC_VER
_Dcomplexzdotc= {0.0, 0.0};
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=conj(Cd(&x[i]))._Val[0] *Cd(&y[i])._Val[0];
zdotc._Val[1] +=conj(Cd(&x[i]))._Val[1] *Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=conj(Cd(&x[i*incx]))._Val[0] *Cd(&y[i*incy])._Val[0];
zdotc._Val[1] +=conj(Cd(&x[i*incx]))._Val[1] *Cd(&y[i*incy])._Val[1];
}
}
pCd(z) =zdotc;
}
#else
_Complexdoublezdotc=0.0;
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=conj(Cd(&x[i])) *Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=conj(Cd(&x[i*incx])) *Cd(&y[i*incy]);
}
}
pCd(z) =zdotc;
}
#endif
staticinlinevoidcdotu_(complex*z, integer*n_, complex*x, integer*incx_, complex*y, integer*incy_) {
integern=*n_, incx=*incx_, incy=*incy_, i;
#ifdef_MSC_VER
_Fcomplexzdotc= {0.0, 0.0};
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=Cf(&x[i])._Val[0] *Cf(&y[i])._Val[0];
zdotc._Val[1] +=Cf(&x[i])._Val[1] *Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=Cf(&x[i*incx])._Val[0] *Cf(&y[i*incy])._Val[0];
zdotc._Val[1] +=Cf(&x[i*incx])._Val[1] *Cf(&y[i*incy])._Val[1];
}
}
pCf(z) =zdotc;
}
#else
_Complexfloatzdotc=0.0;
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=Cf(&x[i]) *Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=Cf(&x[i*incx]) *Cf(&y[i*incy]);
}
}
pCf(z) =zdotc;
}
#endif
staticinlinevoidzdotu_(doublecomplex*z, integer*n_, doublecomplex*x, integer*incx_, doublecomplex*y, integer*incy_) {
integern=*n_, incx=*incx_, incy=*incy_, i;
#ifdef_MSC_VER
_Dcomplexzdotc= {0.0, 0.0};
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=Cd(&x[i])._Val[0] *Cd(&y[i])._Val[0];
zdotc._Val[1] +=Cd(&x[i])._Val[1] *Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=Cd(&x[i*incx])._Val[0] *Cd(&y[i*incy])._Val[0];
zdotc._Val[1] +=Cd(&x[i*incx])._Val[1] *Cd(&y[i*incy])._Val[1];
}
}
pCd(z) =zdotc;
}
#else
_Complexdoublezdotc=0.0;
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=Cd(&x[i]) *Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=Cd(&x[i*incx]) *Cd(&y[i*incy]);
}
}
pCd(z) =zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
staticintegerc__1=1;
/* > \brief <b> CGBSVX computes the solution to system of linear equations A * X = B for GB matrices</b> */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download CGBSVX + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbsvx.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbsvx.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbsvx.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE CGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, */
/* LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, */
/* RCOND, FERR, BERR, WORK, RWORK, INFO ) */
/* CHARACTER EQUED, FACT, TRANS */
/* INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS */
/* REAL RCOND */
/* INTEGER IPIV( * ) */
/* REAL BERR( * ), C( * ), FERR( * ), R( * ), */
/* $ RWORK( * ) */
/* COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), */
/* $ WORK( * ), X( LDX, * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGBSVX uses the LU factorization to compute the solution to a complex */
/* > system of linear equations A * X = B, A**T * X = B, or A**H * X = B, */
/* > where A is a band matrix of order N with KL subdiagonals and KU */
/* > superdiagonals, and X and B are N-by-NRHS matrices. */
/* > */
/* > Error bounds on the solution and a condition estimate are also */
/* > provided. */
/* > \endverbatim */
/* > \par Description: */
/* ================= */
/* > */
/* > \verbatim */
/* > */
/* > The following steps are performed by this subroutine: */
/* > */
/* > 1. If FACT = 'E', real scaling factors are computed to equilibrate */
/* > the system: */
/* > TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B */
/* > TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */
/* > TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */
/* > Whether or not the system will be equilibrated depends on the */
/* > scaling of the matrix A, but if equilibration is used, A is */
/* > overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */
/* > or diag(C)*B (if TRANS = 'T' or 'C'). */
/* > */
/* > 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the */
/* > matrix A (after equilibration if FACT = 'E') as */
/* > A = L * U, */
/* > where L is a product of permutation and unit lower triangular */
/* > matrices with KL subdiagonals, and U is upper triangular with */
/* > KL+KU superdiagonals. */
/* > */
/* > 3. If some U(i,i)=0, so that U is exactly singular, then the routine */
/* > returns with INFO = i. Otherwise, the factored form of A is used */
/* > to estimate the condition number of the matrix A. If the */
/* > reciprocal of the condition number is less than machine precision, */
/* > INFO = N+1 is returned as a warning, but the routine still goes on */
/* > to solve for X and compute error bounds as described below. */
/* > */
/* > 4. The system of equations is solved for X using the factored form */
/* > of A. */
/* > */
/* > 5. Iterative refinement is applied to improve the computed solution */
/* > matrix and calculate error bounds and backward error estimates */
/* > for it. */
/* > */
/* > 6. If equilibration was used, the matrix X is premultiplied by */
/* > diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */
/* > that it solves the original system before equilibration. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] FACT */
/* > \verbatim */
/* > FACT is CHARACTER*1 */
/* > Specifies whether or not the factored form of the matrix A is */
/* > supplied on entry, and if not, whether the matrix A should be */
/* > equilibrated before it is factored. */
/* > = 'F': On entry, AFB and IPIV contain the factored form of */
/* > A. If EQUED is not 'N', the matrix A has been */
/* > equilibrated with scaling factors given by R and C. */
/* > AB, AFB, and IPIV are not modified. */
/* > = 'N': The matrix A will be copied to AFB and factored. */
/* > = 'E': The matrix A will be equilibrated if necessary, then */
/* > copied to AFB and factored. */
/* > \endverbatim */
/* > */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > Specifies the form of the system of equations. */
/* > = 'N': A * X = B (No transpose) */
/* > = 'T': A**T * X = B (Transpose) */
/* > = 'C': A**H * X = B (Conjugate transpose) */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of linear equations, i.e., the order of the */
/* > matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KL */
/* > \verbatim */
/* > KL is INTEGER */
/* > The number of subdiagonals within the band of A. KL >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] KU */
/* > \verbatim */
/* > KU is INTEGER */
/* > The number of superdiagonals within the band of A. KU >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of columns */
/* > of the matrices B and X. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] AB */
/* > \verbatim */
/* > AB is COMPLEX array, dimension (LDAB,N) */
/* > On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
/* > The j-th column of A is stored in the j-th column of the */
/* > array AB as follows: */
/* > AB(KU+1+i-j,j) = A(i,j) for f2cmax(1,j-KU)<=i<=f2cmin(N,j+kl) */
/* > */
/* > If FACT = 'F' and EQUED is not 'N', then A must have been */
/* > equilibrated by the scaling factors in R and/or C. AB is not */
/* > modified if FACT = 'F' or 'N', or if FACT = 'E' and */
/* > EQUED = 'N' on exit. */
/* > */
/* > On exit, if EQUED .ne. 'N', A is scaled as follows: */
/* > EQUED = 'R': A := diag(R) * A */
/* > EQUED = 'C': A := A * diag(C) */
/* > EQUED = 'B': A := diag(R) * A * diag(C). */
/* > \endverbatim */
/* > */
/* > \param[in] LDAB */
/* > \verbatim */
/* > LDAB is INTEGER */
/* > The leading dimension of the array AB. LDAB >= KL+KU+1. */
/* > \endverbatim */
/* > */
/* > \param[in,out] AFB */
/* > \verbatim */
/* > AFB is COMPLEX array, dimension (LDAFB,N) */
/* > If FACT = 'F', then AFB is an input argument and on entry */
/* > contains details of the LU factorization of the band matrix */
/* > A, as computed by CGBTRF. U is stored as an upper triangular */
/* > band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */
/* > and the multipliers used during the factorization are stored */
/* > in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is */
/* > the factored form of the equilibrated matrix A. */
/* > */
/* > If FACT = 'N', then AFB is an output argument and on exit */
/* > returns details of the LU factorization of A. */
/* > */
/* > If FACT = 'E', then AFB is an output argument and on exit */
/* > returns details of the LU factorization of the equilibrated */
/* > matrix A (see the description of AB for the form of the */
/* > equilibrated matrix). */
/* > \endverbatim */
/* > */
/* > \param[in] LDAFB */
/* > \verbatim */
/* > LDAFB is INTEGER */
/* > The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. */
/* > \endverbatim */
/* > */
/* > \param[in,out] IPIV */
/* > \verbatim */
/* > IPIV is INTEGER array, dimension (N) */
/* > If FACT = 'F', then IPIV is an input argument and on entry */
/* > contains the pivot indices from the factorization A = L*U */
/* > as computed by CGBTRF; row i of the matrix was interchanged */
/* > with row IPIV(i). */
/* > */
/* > If FACT = 'N', then IPIV is an output argument and on exit */
/* > contains the pivot indices from the factorization A = L*U */
/* > of the original matrix A. */
/* > */
/* > If FACT = 'E', then IPIV is an output argument and on exit */
/* > contains the pivot indices from the factorization A = L*U */
/* > of the equilibrated matrix A. */
/* > \endverbatim */
/* > */
/* > \param[in,out] EQUED */
/* > \verbatim */
/* > EQUED is CHARACTER*1 */
/* > Specifies the form of equilibration that was done. */
/* > = 'N': No equilibration (always true if FACT = 'N'). */
/* > = 'R': Row equilibration, i.e., A has been premultiplied by */
/* > diag(R). */
/* > = 'C': Column equilibration, i.e., A has been postmultiplied */
/* > by diag(C). */
/* > = 'B': Both row and column equilibration, i.e., A has been */
/* > replaced by diag(R) * A * diag(C). */
/* > EQUED is an input argument if FACT = 'F'; otherwise, it is an */
/* > output argument. */
/* > \endverbatim */
/* > */
/* > \param[in,out] R */
/* > \verbatim */
/* > R is REAL array, dimension (N) */
/* > The row scale factors for A. If EQUED = 'R' or 'B', A is */
/* > multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
/* > is not accessed. R is an input argument if FACT = 'F'; */
/* > otherwise, R is an output argument. If FACT = 'F' and */
/* > EQUED = 'R' or 'B', each element of R must be positive. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C */
/* > \verbatim */
/* > C is REAL array, dimension (N) */
/* > The column scale factors for A. If EQUED = 'C' or 'B', A is */
/* > multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
/* > is not accessed. C is an input argument if FACT = 'F'; */
/* > otherwise, C is an output argument. If FACT = 'F' and */
/* > EQUED = 'C' or 'B', each element of C must be positive. */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is COMPLEX array, dimension (LDB,NRHS) */
/* > On entry, the right hand side matrix B. */
/* > On exit, */
/* > if EQUED = 'N', B is not modified; */
/* > if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */
/* > diag(R)*B; */
/* > if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */
/* > overwritten by diag(C)*B. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] X */
/* > \verbatim */
/* > X is COMPLEX array, dimension (LDX,NRHS) */
/* > If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X */
/* > to the original system of equations. Note that A and B are */
/* > modified on exit if EQUED .ne. 'N', and the solution to the */
/* > equilibrated system is inv(diag(C))*X if TRANS = 'N' and */
/* > EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' */
/* > and EQUED = 'R' or 'B'. */
/* > \endverbatim */
/* > */
/* > \param[in] LDX */
/* > \verbatim */
/* > LDX is INTEGER */
/* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] RCOND */
/* > \verbatim */
/* > RCOND is REAL */
/* > The estimate of the reciprocal condition number of the matrix */
/* > A after equilibration (if done). If RCOND is less than the */
/* > machine precision (in particular, if RCOND = 0), the matrix */
/* > is singular to working precision. This condition is */
/* > indicated by a return code of INFO > 0. */
/* > \endverbatim */
/* > */
/* > \param[out] FERR */
/* > \verbatim */
/* > FERR is REAL array, dimension (NRHS) */
/* > The estimated forward error bound for each solution vector */
/* > X(j) (the j-th column of the solution matrix X). */
/* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
/* > is an estimated upper bound for the magnitude of the largest */
/* > element in (X(j) - XTRUE) divided by the magnitude of the */
/* > largest element in X(j). The estimate is as reliable as */
/* > the estimate for RCOND, and is almost always a slight */
/* > overestimate of the true error. */
/* > \endverbatim */
/* > */
/* > \param[out] BERR */
/* > \verbatim */
/* > BERR is REAL array, dimension (NRHS) */
/* > The componentwise relative backward error of each solution */
/* > vector X(j) (i.e., the smallest relative change in */
/* > any element of A or B that makes X(j) an exact solution). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX array, dimension (2*N) */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is REAL array, dimension (N) */
/* > On exit, RWORK(1) contains the reciprocal pivot growth */
/* > factor norm(A)/norm(U). The "f2cmax absolute element" norm is */
/* > used. If RWORK(1) is much less than 1, then the stability */
/* > of the LU factorization of the (equilibrated) matrix A */
/* > could be poor. This also means that the solution X, condition */
/* > estimator RCOND, and forward error bound FERR could be */
/* > unreliable. If factorization fails with 0<INFO<=N, then */
/* > RWORK(1) contains the reciprocal pivot growth factor for the */
/* > leading INFO columns of A. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, and i is */
/* > <= N: U(i,i) is exactly zero. The factorization */
/* > has been completed, but the factor U is exactly */
/* > singular, so the solution and error bounds */
/* > could not be computed. RCOND = 0 is returned. */
/* > = N+1: U is nonsingular, but RCOND is less than machine */
/* > precision, meaning that the matrix is singular */
/* > to working precision. Nevertheless, the */
/* > solution and error bounds are computed because */
/* > there are a number of situations where the */
/* > computed solution can be more accurate than the */
/* > value of RCOND would suggest. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date April 2012 */
/* > \ingroup complexGBsolve */
/* ===================================================================== */
/* Subroutine */voidcgbsvx_(char*fact, char*trans, integer*n, integer*kl,
integer*ku, integer*nrhs, complex*ab, integer*ldab, complex*afb,
integer*ldafb, integer*ipiv, char*equed, real*r__, real*c__,
complex*b, integer*ldb, complex*x, integer*ldx, real*rcond, real
*ferr, real*berr, complex*work, real*rwork, integer*info)
{
/* System generated locals */
integerab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset,
x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
realr__1, r__2;
complexq__1;
/* Local variables */
realamax;
charnorm[1];
integeri__, j;
externlogicallsame_(char*, char*);
realrcmin, rcmax, anorm;
extern/* Subroutine */voidccopy_(integer*, complex*, integer*,
complex*, integer*);
logicalequil;
integerj1, j2;
externrealclangb_(char*, integer*, integer*, integer*, complex*,
integer*, real*);
extern/* Subroutine */voidclaqgb_(integer*, integer*, integer*,
integer*, complex*, integer*, real*, real*, real*, real*,
real*, char*), cgbcon_(char*, integer*, integer*,
integer*, complex*, integer*, integer*, real*, real*,
complex*, real*, integer*);
realcolcnd;
externrealclantb_(char*, char*, char*, integer*, integer*, complex
*, integer*, real*);
extern/* Subroutine */voidcgbequ_(integer*, integer*, integer*,
integer*, complex*, integer*, real*, real*, real*, real*,
real*, integer*);
externrealslamch_(char*);
extern/* Subroutine */voidcgbrfs_(char*, integer*, integer*, integer
*, integer*, complex*, integer*, complex*, integer*, integer
*, complex*, integer*, complex*, integer*, real*, real*,
complex*, real*, integer*), cgbtrf_(integer*, integer
*, integer*, integer*, complex*, integer*, integer*, integer
*);
logicalnofact;
extern/* Subroutine */voidclacpy_(char*, integer*, integer*, complex
*, integer*, complex*, integer*);
externintxerbla_(char*, integer*, ftnlen);
realbignum;
extern/* Subroutine */voidcgbtrs_(char*, integer*, integer*, integer
*, integer*, complex*, integer*, integer*, complex*, integer
*, integer*);
integerinfequ;
logicalcolequ;
realrowcnd;
logicalnotran;
realsmlnum;
logicalrowequ;
realrpvgrw;
/* -- LAPACK driver routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* April 2012 */
/* ===================================================================== */
/* Moved setting of INFO = N+1 so INFO does not subsequently get */
/* overwritten. Sven, 17 Mar 05. */
/* ===================================================================== */
/* Parameter adjustments */
ab_dim1=*ldab;
ab_offset=1+ab_dim1*1;
ab-=ab_offset;
afb_dim1=*ldafb;
afb_offset=1+afb_dim1*1;
afb-=afb_offset;
--ipiv;
--r__;
--c__;
b_dim1=*ldb;
b_offset=1+b_dim1*1;
b-=b_offset;
x_dim1=*ldx;
x_offset=1+x_dim1*1;
x-=x_offset;
--ferr;
--berr;
--work;
--rwork;
/* Function Body */
*info=0;
nofact=lsame_(fact, "N");
equil=lsame_(fact, "E");
notran=lsame_(trans, "N");
if (nofact||equil) {
*(unsigned char*)equed='N';
rowequ=FALSE_;
colequ=FALSE_;
} else {
rowequ=lsame_(equed, "R") ||lsame_(equed,
"B");
colequ=lsame_(equed, "C") ||lsame_(equed,