- Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathcherkf.f
328 lines (328 loc) · 10.7 KB
/
cherkf.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
SUBROUTINECHERKF ( UPLO, TRANS, N, K, ALPHA, A, LDA,
$BETA, C, LDC )
* .. Scalar Arguments ..
CHARACTER*1 UPLO, TRANS
INTEGER N, K, LDA, LDC
REAL ALPHA, BETA
* .. Array Arguments ..
COMPLEX A( LDA, * ), C( LDC, * )
* ..
*
* Purpose
* =======
*
* CHERK performs one of the hermitian rank k operations
*
* C := alpha*A*conjg( A' ) + beta*C,
*
* or
*
* C := alpha*conjg( A' )*A + beta*C,
*
* where alpha and beta are real scalars, C is an n by n hermitian
* matrix and A is an n by k matrix in the first case and a k by n
* matrix in the second case.
*
* Parameters
* ==========
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the upper or lower
* triangular part of the array C is to be referenced as
* follows:
*
* UPLO = 'U' or 'u' Only the upper triangular part of C
* is to be referenced.
*
* UPLO = 'L' or 'l' Only the lower triangular part of C
* is to be referenced.
*
* Unchanged on exit.
*
* TRANS - CHARACTER*1.
* On entry, TRANS specifies the operation to be performed as
* follows:
*
* TRANS = 'N' or 'n' C := alpha*A*conjg( A' ) + beta*C.
*
* TRANS = 'C' or 'c' C := alpha*conjg( A' )*A + beta*C.
*
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the order of the matrix C. N must be
* at least zero.
* Unchanged on exit.
*
* K - INTEGER.
* On entry with TRANS = 'N' or 'n', K specifies the number
* of columns of the matrix A, and on entry with
* TRANS = 'C' or 'c', K specifies the number of rows of the
* matrix A. K must be at least zero.
* Unchanged on exit.
*
* ALPHA - REAL .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
* k when TRANS = 'N' or 'n', and is n otherwise.
* Before entry with TRANS = 'N' or 'n', the leading n by k
* part of the array A must contain the matrix A, otherwise
* the leading k by n part of the array A must contain the
* matrix A.
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. When TRANS = 'N' or 'n'
* then LDA must be at least max( 1, n ), otherwise LDA must
* be at least max( 1, k ).
* Unchanged on exit.
*
* BETA - REAL .
* On entry, BETA specifies the scalar beta.
* Unchanged on exit.
*
* C - COMPLEX array of DIMENSION ( LDC, n ).
* Before entry with UPLO = 'U' or 'u', the leading n by n
* upper triangular part of the array C must contain the upper
* triangular part of the hermitian matrix and the strictly
* lower triangular part of C is not referenced. On exit, the
* upper triangular part of the array C is overwritten by the
* upper triangular part of the updated matrix.
* Before entry with UPLO = 'L' or 'l', the leading n by n
* lower triangular part of the array C must contain the lower
* triangular part of the hermitian matrix and the strictly
* upper triangular part of C is not referenced. On exit, the
* lower triangular part of the array C is overwritten by the
* lower triangular part of the updated matrix.
* Note that the imaginary parts of the diagonal elements need
* not be set, they are assumed to be zero, and on exit they
* are set to zero.
*
* LDC - INTEGER.
* On entry, LDC specifies the first dimension of C as declared
* in the calling (sub) program. LDC must be at least
* max( 1, n ).
* Unchanged on exit.
*
*
* Level 3 Blas routine.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
* -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1.
* Ed Anderson, Cray Research Inc.
*
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL XERBLA
* .. Intrinsic Functions ..
INTRINSIC CMPLX, CONJG, MAX, REAL
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I, INFO, J, L, NROWA
REAL RTEMP
COMPLEX TEMP
* .. Parameters ..
REAL ONE , ZERO
PARAMETER ( ONE =1.0E+0, ZERO =0.0E+0 )
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
IF( LSAME( TRANS, 'N' ) )THEN
NROWA = N
ELSE
NROWA = K
END IF
UPPER = LSAME( UPLO, 'U' )
*
INFO =0
IF( ( .NOT.UPPER ).AND.
$ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
INFO =1
ELSEIF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
$ ( .NOT.LSAME( TRANS, 'C' ) ) )THEN
INFO =2
ELSEIF( N .LT.0 )THEN
INFO =3
ELSEIF( K .LT.0 )THEN
INFO =4
ELSEIF( LDA.LT.MAX( 1, NROWA ) )THEN
INFO =7
ELSEIF( LDC.LT.MAX( 1, N ) )THEN
INFO =10
END IF
IF( INFO.NE.0 )THEN
CALL XERBLA( 'CHERK ', INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( ( N.EQ.0 ).OR.
$ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
$ RETURN
*
* And when alpha.eq.zero.
*
IF( ALPHA.EQ.ZERO )THEN
IF( UPPER )THEN
IF( BETA.EQ.ZERO )THEN
DO20, J =1, N
DO10, I =1, J
C( I, J ) = ZERO
10CONTINUE
20CONTINUE
ELSE
DO40, J =1, N
DO30, I =1, J -1
C( I, J ) = BETA*C( I, J )
30CONTINUE
C( J, J ) = BETA*REAL( C( J, J ) )
40CONTINUE
END IF
ELSE
IF( BETA.EQ.ZERO )THEN
DO60, J =1, N
DO50, I = J, N
C( I, J ) = ZERO
50CONTINUE
60CONTINUE
ELSE
DO80, J =1, N
C( J, J ) = BETA*REAL( C( J, J ) )
DO70, I = J +1, N
C( I, J ) = BETA*C( I, J )
70CONTINUE
80CONTINUE
END IF
END IF
RETURN
END IF
*
* Start the operations.
*
IF( LSAME( TRANS, 'N' ) )THEN
*
* Form C := alpha*A*conjg( A' ) + beta*C.
*
IF( UPPER )THEN
DO130, J =1, N
IF( BETA.EQ.ZERO )THEN
DO90, I =1, J
C( I, J ) = ZERO
90CONTINUE
ELSEIF( BETA.NE.ONE )THEN
DO100, I =1, J -1
C( I, J ) = BETA*C( I, J )
100CONTINUE
C( J, J ) = BETA*REAL( C( J, J ) )
ELSE
C( J, J ) =REAL( C( J, J ) )
END IF
DO120, L =1, K
IF( A( J, L ).NE.CMPLX( ZERO ) )THEN
TEMP = ALPHA*CONJG( A( J, L ) )
DO110, I =1, J -1
C( I, J ) = C( I, J ) + TEMP*A( I, L )
110CONTINUE
C( J, J ) =REAL( C( J, J ) ) +
$ REAL( TEMP*A( I, L ) )
END IF
120CONTINUE
130CONTINUE
ELSE
DO180, J =1, N
IF( BETA.EQ.ZERO )THEN
DO140, I = J, N
C( I, J ) = ZERO
140CONTINUE
ELSEIF( BETA.NE.ONE )THEN
C( J, J ) = BETA*REAL( C( J, J ) )
DO150, I = J +1, N
C( I, J ) = BETA*C( I, J )
150CONTINUE
ELSE
C( J, J ) =REAL( C( J, J ) )
END IF
DO170, L =1, K
IF( A( J, L ).NE.CMPLX( ZERO ) )THEN
TEMP = ALPHA*CONJG( A( J, L ) )
C( J, J ) =REAL( C( J, J ) ) +
$ REAL( TEMP*A( J, L ) )
DO160, I = J +1, N
C( I, J ) = C( I, J ) + TEMP*A( I, L )
160CONTINUE
END IF
170CONTINUE
180CONTINUE
END IF
ELSE
*
* Form C := alpha*conjg( A' )*A + beta*C.
*
IF( UPPER )THEN
DO220, J =1, N
DO200, I =1, J -1
TEMP = ZERO
DO190, L =1, K
TEMP = TEMP +CONJG( A( L, I ) )*A( L, J )
190CONTINUE
IF( BETA.EQ.ZERO )THEN
C( I, J ) = ALPHA*TEMP
ELSE
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
END IF
200CONTINUE
RTEMP = ZERO
DO210, L =1, K
RTEMP = RTEMP +CONJG( A( L, J ) )*A( L, J )
210CONTINUE
IF( BETA.EQ.ZERO )THEN
C( J, J ) = ALPHA*RTEMP
ELSE
C( J, J ) = ALPHA*RTEMP + BETA*REAL( C( J, J ) )
END IF
220CONTINUE
ELSE
DO260, J =1, N
RTEMP = ZERO
DO230, L =1, K
RTEMP = RTEMP +CONJG( A( L, J ) )*A( L, J )
230CONTINUE
IF( BETA.EQ.ZERO )THEN
C( J, J ) = ALPHA*RTEMP
ELSE
C( J, J ) = ALPHA*RTEMP + BETA*REAL( C( J, J ) )
END IF
DO250, I = J +1, N
TEMP = ZERO
DO240, L =1, K
TEMP = TEMP +CONJG( A( L, I ) )*A( L, J )
240CONTINUE
IF( BETA.EQ.ZERO )THEN
C( I, J ) = ALPHA*TEMP
ELSE
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
END IF
250CONTINUE
260CONTINUE
END IF
END IF
*
RETURN
*
* End of CHERK .
*
END