- Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathcgejsv.c
3552 lines (3319 loc) · 119 KB
/
cgejsv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include<math.h>
#include<stdlib.h>
#include<string.h>
#include<stdio.h>
#include<complex.h>
#ifdefcomplex
#undef complex
#endif
#ifdefI
#undef I
#endif
#if defined(_WIN64)
typedeflong longBLASLONG;
typedefunsigned long longBLASULONG;
#else
typedeflongBLASLONG;
typedefunsigned longBLASULONG;
#endif
#ifdefLAPACK_ILP64
typedefBLASLONGblasint;
#if defined(_WIN64)
#defineblasabs(x) llabs(x)
#else
#defineblasabs(x) labs(x)
#endif
#else
typedefintblasint;
#defineblasabs(x) abs(x)
#endif
typedefblasintinteger;
typedefunsigned intuinteger;
typedefchar*address;
typedefshort intshortint;
typedeffloatreal;
typedefdoubledoublereal;
typedefstruct { realr, i; } complex;
typedefstruct { doublerealr, i; } doublecomplex;
#ifdef_MSC_VER
staticinline_FcomplexCf(complex*z) {_Fcomplexzz={z->r , z->i}; returnzz;}
staticinline_DcomplexCd(doublecomplex*z) {_Dcomplexzz={z->r , z->i};returnzz;}
staticinline_Fcomplex*_pCf(complex*z) {return (_Fcomplex*)z;}
staticinline_Dcomplex*_pCd(doublecomplex*z) {return (_Dcomplex*)z;}
#else
staticinline_ComplexfloatCf(complex*z) {returnz->r+z->i*_Complex_I;}
staticinline_ComplexdoubleCd(doublecomplex*z) {returnz->r+z->i*_Complex_I;}
staticinline_Complexfloat*_pCf(complex*z) {return (_Complexfloat*)z;}
staticinline_Complexdouble*_pCd(doublecomplex*z) {return (_Complexdouble*)z;}
#endif
#definepCf(z) (*_pCf(z))
#definepCd(z) (*_pCd(z))
typedefintlogical;
typedefshort intshortlogical;
typedefcharlogical1;
typedefcharinteger1;
#defineTRUE_ (1)
#defineFALSE_ (0)
/* Extern is for use with -E */
#ifndefExtern
#defineExtern extern
#endif
/* I/O stuff */
typedefintflag;
typedefintftnlen;
typedefintftnint;
/*external read, write*/
typedefstruct
{ flagcierr;
ftnintciunit;
flagciend;
char*cifmt;
ftnintcirec;
} cilist;
/*internal read, write*/
typedefstruct
{ flagicierr;
char*iciunit;
flagiciend;
char*icifmt;
ftninticirlen;
ftninticirnum;
} icilist;
/*open*/
typedefstruct
{ flagoerr;
ftnintounit;
char*ofnm;
ftnlenofnmlen;
char*osta;
char*oacc;
char*ofm;
ftnintorl;
char*oblnk;
} olist;
/*close*/
typedefstruct
{ flagcerr;
ftnintcunit;
char*csta;
} cllist;
/*rewind, backspace, endfile*/
typedefstruct
{ flagaerr;
ftnintaunit;
} alist;
/* inquire */
typedefstruct
{ flaginerr;
ftnintinunit;
char*infile;
ftnleninfilen;
ftnint*inex; /*parameters in standard's order*/
ftnint*inopen;
ftnint*innum;
ftnint*innamed;
char*inname;
ftnleninnamlen;
char*inacc;
ftnleninacclen;
char*inseq;
ftnleninseqlen;
char*indir;
ftnlenindirlen;
char*infmt;
ftnleninfmtlen;
char*inform;
ftnintinformlen;
char*inunf;
ftnleninunflen;
ftnint*inrecl;
ftnint*innrec;
char*inblank;
ftnleninblanklen;
} inlist;
#defineVOID void
unionMultitype { /* for multiple entry points */
integer1g;
shortinth;
integeri;
/* longint j; */
realr;
doublereald;
complexc;
doublecomplexz;
};
typedefunionMultitypeMultitype;
structVardesc { /* for Namelist */
char*name;
char*addr;
ftnlen*dims;
inttype;
};
typedefstructVardescVardesc;
structNamelist {
char*name;
Vardesc**vars;
intnvars;
};
typedefstructNamelistNamelist;
#defineabs(x) ((x) >= 0 ? (x) : -(x))
#definedabs(x) (fabs(x))
#definef2cmin(a,b) ((a) <= (b) ? (a) : (b))
#definef2cmax(a,b) ((a) >= (b) ? (a) : (b))
#definedmin(a,b) (f2cmin(a,b))
#definedmax(a,b) (f2cmax(a,b))
#definebit_test(a,b) ((a) >> (b) & 1)
#definebit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#definebit_set(a,b) ((a) | ((uinteger)1 << (b)))
#defineabort_() { sig_die("Fortran abort routine called", 1); }
#definec_abs(z) (cabsf(Cf(z)))
#definec_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef_MSC_VER
#definec_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#definez_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#definec_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#definez_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#definec_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#definec_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#definec_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#definec_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#defined_abs(x) (fabs(*(x)))
#defined_acos(x) (acos(*(x)))
#defined_asin(x) (asin(*(x)))
#defined_atan(x) (atan(*(x)))
#defined_atn2(x, y) (atan2(*(x),*(y)))
#defined_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#definer_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#defined_cos(x) (cos(*(x)))
#defined_cosh(x) (cosh(*(x)))
#defined_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#defined_exp(x) (exp(*(x)))
#defined_imag(z) (cimag(Cd(z)))
#definer_imag(z) (cimagf(Cf(z)))
#defined_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#definer_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#defined_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#definer_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#defined_log(x) (log(*(x)))
#defined_mod(x, y) (fmod(*(x), *(y)))
#defineu_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#defined_nint(x) u_nint(*(x))
#defineu_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#defined_sign(a,b) u_sign(*(a),*(b))
#definer_sign(a,b) u_sign(*(a),*(b))
#defined_sin(x) (sin(*(x)))
#defined_sinh(x) (sinh(*(x)))
#defined_sqrt(x) (sqrt(*(x)))
#defined_tan(x) (tan(*(x)))
#defined_tanh(x) (tanh(*(x)))
#definei_abs(x) abs(*(x))
#definei_dnnt(x) ((integer)u_nint(*(x)))
#definei_len(s, n) (n)
#definei_nint(x) ((integer)u_nint(*(x)))
#definei_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#definepow_dd(ap, bp) ( pow(*(ap), *(bp)))
#definepow_si(B,E) spow_ui(*(B),*(E))
#definepow_ri(B,E) spow_ui(*(B),*(E))
#definepow_di(B,E) dpow_ui(*(B),*(E))
#definepow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#definepow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#definepow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#defines_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#defines_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#defines_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#definesig_die(s, kill) { exit(1); }
#defines_stop(s, n) {exit(0);}
staticcharjunk[] ="\n@(#)LIBF77 VERSION 19990503\n";
#definez_abs(z) (cabs(Cd(z)))
#definez_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#definez_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#definemyexit_() break;
#definemycycle() continue;
#definemyceiling(w) {ceil(w)}
#definemyhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#definemymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#defineF2C_proc_par_types 1
#ifdef__cplusplus
typedeflogical (*L_fp)(...);
#else
typedeflogical (*L_fp)();
#endif
staticfloatspow_ui(floatx, integern) {
floatpow=1.0; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x=1/x;
for(u=n; ; ) {
if(u&01) pow *= x;
if(u >>= 1) x *= x;
elsebreak;
}
}
returnpow;
}
staticdoubledpow_ui(doublex, integern) {
doublepow=1.0; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x=1/x;
for(u=n; ; ) {
if(u&01) pow *= x;
if(u >>= 1) x *= x;
elsebreak;
}
}
returnpow;
}
#ifdef_MSC_VER
static_Fcomplexcpow_ui(complexx, integern) {
complexpow={1.0,0.0}; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x.r=1/x.r, x.i=1/x.i;
for(u=n; ; ) {
if(u&01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
elsebreak;
}
}
_Fcomplexp={pow.r, pow.i};
returnp;
}
#else
static_Complexfloatcpow_ui(_Complexfloatx, integern) {
_Complexfloatpow=1.0; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x=1/x;
for(u=n; ; ) {
if(u&01) pow *= x;
if(u >>= 1) x *= x;
elsebreak;
}
}
returnpow;
}
#endif
#ifdef_MSC_VER
static_Dcomplexzpow_ui(_Dcomplexx, integern) {
_Dcomplexpow={1.0,0.0}; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x._Val[0] =1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u=n; ; ) {
if(u&01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
elsebreak;
}
}
_Dcomplexp= {pow._Val[0], pow._Val[1]};
returnp;
}
#else
static_Complexdoublezpow_ui(_Complexdoublex, integern) {
_Complexdoublepow=1.0; unsigned long intu;
if(n!=0) {
if(n<0) n=-n, x=1/x;
for(u=n; ; ) {
if(u&01) pow *= x;
if(u >>= 1) x *= x;
elsebreak;
}
}
returnpow;
}
#endif
staticintegerpow_ii(integerx, integern) {
integerpow; unsigned long intu;
if (n <= 0) {
if (n==0||x==1) pow=1;
elseif (x!=-1) pow=x==0 ? 1/x : 0;
elsen=-n;
}
if ((n>0) || !(n==0||x==1||x!=-1)) {
u=n;
for(pow=1; ; ) {
if(u&01) pow *= x;
if(u >>= 1) x *= x;
elsebreak;
}
}
returnpow;
}
staticintegerdmaxloc_(double*w, integers, integere, integer*n)
{
doublem; integeri, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
returnmi-s+1;
}
staticintegersmaxloc_(float*w, integers, integere, integer*n)
{
floatm; integeri, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
returnmi-s+1;
}
staticinlinevoidcdotc_(complex*z, integer*n_, complex*x, integer*incx_, complex*y, integer*incy_) {
integern=*n_, incx=*incx_, incy=*incy_, i;
#ifdef_MSC_VER
_Fcomplexzdotc= {0.0, 0.0};
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=conjf(Cf(&x[i]))._Val[0] *Cf(&y[i])._Val[0];
zdotc._Val[1] +=conjf(Cf(&x[i]))._Val[1] *Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=conjf(Cf(&x[i*incx]))._Val[0] *Cf(&y[i*incy])._Val[0];
zdotc._Val[1] +=conjf(Cf(&x[i*incx]))._Val[1] *Cf(&y[i*incy])._Val[1];
}
}
pCf(z) =zdotc;
}
#else
_Complexfloatzdotc=0.0;
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=conjf(Cf(&x[i])) *Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=conjf(Cf(&x[i*incx])) *Cf(&y[i*incy]);
}
}
pCf(z) =zdotc;
}
#endif
staticinlinevoidzdotc_(doublecomplex*z, integer*n_, doublecomplex*x, integer*incx_, doublecomplex*y, integer*incy_) {
integern=*n_, incx=*incx_, incy=*incy_, i;
#ifdef_MSC_VER
_Dcomplexzdotc= {0.0, 0.0};
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=conj(Cd(&x[i]))._Val[0] *Cd(&y[i])._Val[0];
zdotc._Val[1] +=conj(Cd(&x[i]))._Val[1] *Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=conj(Cd(&x[i*incx]))._Val[0] *Cd(&y[i*incy])._Val[0];
zdotc._Val[1] +=conj(Cd(&x[i*incx]))._Val[1] *Cd(&y[i*incy])._Val[1];
}
}
pCd(z) =zdotc;
}
#else
_Complexdoublezdotc=0.0;
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=conj(Cd(&x[i])) *Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=conj(Cd(&x[i*incx])) *Cd(&y[i*incy]);
}
}
pCd(z) =zdotc;
}
#endif
staticinlinevoidcdotu_(complex*z, integer*n_, complex*x, integer*incx_, complex*y, integer*incy_) {
integern=*n_, incx=*incx_, incy=*incy_, i;
#ifdef_MSC_VER
_Fcomplexzdotc= {0.0, 0.0};
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=Cf(&x[i])._Val[0] *Cf(&y[i])._Val[0];
zdotc._Val[1] +=Cf(&x[i])._Val[1] *Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=Cf(&x[i*incx])._Val[0] *Cf(&y[i*incy])._Val[0];
zdotc._Val[1] +=Cf(&x[i*incx])._Val[1] *Cf(&y[i*incy])._Val[1];
}
}
pCf(z) =zdotc;
}
#else
_Complexfloatzdotc=0.0;
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=Cf(&x[i]) *Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=Cf(&x[i*incx]) *Cf(&y[i*incy]);
}
}
pCf(z) =zdotc;
}
#endif
staticinlinevoidzdotu_(doublecomplex*z, integer*n_, doublecomplex*x, integer*incx_, doublecomplex*y, integer*incy_) {
integern=*n_, incx=*incx_, incy=*incy_, i;
#ifdef_MSC_VER
_Dcomplexzdotc= {0.0, 0.0};
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=Cd(&x[i])._Val[0] *Cd(&y[i])._Val[0];
zdotc._Val[1] +=Cd(&x[i])._Val[1] *Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] +=Cd(&x[i*incx])._Val[0] *Cd(&y[i*incy])._Val[0];
zdotc._Val[1] +=Cd(&x[i*incx])._Val[1] *Cd(&y[i*incy])._Val[1];
}
}
pCd(z) =zdotc;
}
#else
_Complexdoublezdotc=0.0;
if (incx==1&&incy==1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=Cd(&x[i]) *Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc+=Cd(&x[i*incx]) *Cd(&y[i*incy]);
}
}
pCd(z) =zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
staticcomplexc_b1= {0.f,0.f};
staticcomplexc_b2= {1.f,0.f};
staticintegerc_n1=-1;
staticintegerc__1=1;
staticintegerc__0=0;
staticrealc_b141=1.f;
staticlogicalc_false=FALSE_;
/* > \brief \b CGEJSV */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download CGEJSV + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgejsv.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgejsv.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgejsv.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE CGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP, */
/* M, N, A, LDA, SVA, U, LDU, V, LDV, */
/* CWORK, LWORK, RWORK, LRWORK, IWORK, INFO ) */
/* IMPLICIT NONE */
/* INTEGER INFO, LDA, LDU, LDV, LWORK, M, N */
/* COMPLEX A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( LWORK ) */
/* REAL SVA( N ), RWORK( LRWORK ) */
/* INTEGER IWORK( * ) */
/* CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGEJSV computes the singular value decomposition (SVD) of a complex M-by-N */
/* > matrix [A], where M >= N. The SVD of [A] is written as */
/* > */
/* > [A] = [U] * [SIGMA] * [V]^*, */
/* > */
/* > where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N */
/* > diagonal elements, [U] is an M-by-N (or M-by-M) unitary matrix, and */
/* > [V] is an N-by-N unitary matrix. The diagonal elements of [SIGMA] are */
/* > the singular values of [A]. The columns of [U] and [V] are the left and */
/* > the right singular vectors of [A], respectively. The matrices [U] and [V] */
/* > are computed and stored in the arrays U and V, respectively. The diagonal */
/* > of [SIGMA] is computed and stored in the array SVA. */
/* > \endverbatim */
/* > */
/* > Arguments: */
/* > ========== */
/* > */
/* > \param[in] JOBA */
/* > \verbatim */
/* > JOBA is CHARACTER*1 */
/* > Specifies the level of accuracy: */
/* > = 'C': This option works well (high relative accuracy) if A = B * D, */
/* > with well-conditioned B and arbitrary diagonal matrix D. */
/* > The accuracy cannot be spoiled by COLUMN scaling. The */
/* > accuracy of the computed output depends on the condition of */
/* > B, and the procedure aims at the best theoretical accuracy. */
/* > The relative error max_{i=1:N}|d sigma_i| / sigma_i is */
/* > bounded by f(M,N)*epsilon* cond(B), independent of D. */
/* > The input matrix is preprocessed with the QRF with column */
/* > pivoting. This initial preprocessing and preconditioning by */
/* > a rank revealing QR factorization is common for all values of */
/* > JOBA. Additional actions are specified as follows: */
/* > = 'E': Computation as with 'C' with an additional estimate of the */
/* > condition number of B. It provides a realistic error bound. */
/* > = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings */
/* > D1, D2, and well-conditioned matrix C, this option gives */
/* > higher accuracy than the 'C' option. If the structure of the */
/* > input matrix is not known, and relative accuracy is */
/* > desirable, then this option is advisable. The input matrix A */
/* > is preprocessed with QR factorization with FULL (row and */
/* > column) pivoting. */
/* > = 'G': Computation as with 'F' with an additional estimate of the */
/* > condition number of B, where A=B*D. If A has heavily weighted */
/* > rows, then using this condition number gives too pessimistic */
/* > error bound. */
/* > = 'A': Small singular values are not well determined by the data */
/* > and are considered as noisy; the matrix is treated as */
/* > numerically rank deficient. The error in the computed */
/* > singular values is bounded by f(m,n)*epsilon*||A||. */
/* > The computed SVD A = U * S * V^* restores A up to */
/* > f(m,n)*epsilon*||A||. */
/* > This gives the procedure the licence to discard (set to zero) */
/* > all singular values below N*epsilon*||A||. */
/* > = 'R': Similar as in 'A'. Rank revealing property of the initial */
/* > QR factorization is used do reveal (using triangular factor) */
/* > a gap sigma_{r+1} < epsilon * sigma_r in which case the */
/* > numerical RANK is declared to be r. The SVD is computed with */
/* > absolute error bounds, but more accurately than with 'A'. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBU */
/* > \verbatim */
/* > JOBU is CHARACTER*1 */
/* > Specifies whether to compute the columns of U: */
/* > = 'U': N columns of U are returned in the array U. */
/* > = 'F': full set of M left sing. vectors is returned in the array U. */
/* > = 'W': U may be used as workspace of length M*N. See the description */
/* > of U. */
/* > = 'N': U is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBV */
/* > \verbatim */
/* > JOBV is CHARACTER*1 */
/* > Specifies whether to compute the matrix V: */
/* > = 'V': N columns of V are returned in the array V; Jacobi rotations */
/* > are not explicitly accumulated. */
/* > = 'J': N columns of V are returned in the array V, but they are */
/* > computed as the product of Jacobi rotations, if JOBT = 'N'. */
/* > = 'W': V may be used as workspace of length N*N. See the description */
/* > of V. */
/* > = 'N': V is not computed. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBR */
/* > \verbatim */
/* > JOBR is CHARACTER*1 */
/* > Specifies the RANGE for the singular values. Issues the licence to */
/* > set to zero small positive singular values if they are outside */
/* > specified range. If A .NE. 0 is scaled so that the largest singular */
/* > value of c*A is around SQRT(BIG), BIG=SLAMCH('O'), then JOBR issues */
/* > the licence to kill columns of A whose norm in c*A is less than */
/* > SQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN, */
/* > where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E'). */
/* > = 'N': Do not kill small columns of c*A. This option assumes that */
/* > BLAS and QR factorizations and triangular solvers are */
/* > implemented to work in that range. If the condition of A */
/* > is greater than BIG, use CGESVJ. */
/* > = 'R': RESTRICTED range for sigma(c*A) is [SQRT(SFMIN), SQRT(BIG)] */
/* > (roughly, as described above). This option is recommended. */
/* > =========================== */
/* > For computing the singular values in the FULL range [SFMIN,BIG] */
/* > use CGESVJ. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBT */
/* > \verbatim */
/* > JOBT is CHARACTER*1 */
/* > If the matrix is square then the procedure may determine to use */
/* > transposed A if A^* seems to be better with respect to convergence. */
/* > If the matrix is not square, JOBT is ignored. */
/* > The decision is based on two values of entropy over the adjoint */
/* > orbit of A^* * A. See the descriptions of WORK(6) and WORK(7). */
/* > = 'T': transpose if entropy test indicates possibly faster */
/* > convergence of Jacobi process if A^* is taken as input. If A is */
/* > replaced with A^*, then the row pivoting is included automatically. */
/* > = 'N': do not speculate. */
/* > The option 'T' can be used to compute only the singular values, or */
/* > the full SVD (U, SIGMA and V). For only one set of singular vectors */
/* > (U or V), the caller should provide both U and V, as one of the */
/* > matrices is used as workspace if the matrix A is transposed. */
/* > The implementer can easily remove this constraint and make the */
/* > code more complicated. See the descriptions of U and V. */
/* > In general, this option is considered experimental, and 'N'; should */
/* > be preferred. This is subject to changes in the future. */
/* > \endverbatim */
/* > */
/* > \param[in] JOBP */
/* > \verbatim */
/* > JOBP is CHARACTER*1 */
/* > Issues the licence to introduce structured perturbations to drown */
/* > denormalized numbers. This licence should be active if the */
/* > denormals are poorly implemented, causing slow computation, */
/* > especially in cases of fast convergence (!). For details see [1,2]. */
/* > For the sake of simplicity, this perturbations are included only */
/* > when the full SVD or only the singular values are requested. The */
/* > implementer/user can easily add the perturbation for the cases of */
/* > computing one set of singular vectors. */
/* > = 'P': introduce perturbation */
/* > = 'N': do not perturb */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the input matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the input matrix A. M >= N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] SVA */
/* > \verbatim */
/* > SVA is REAL array, dimension (N) */
/* > On exit, */
/* > - For WORK(1)/WORK(2) = ONE: The singular values of A. During the */
/* > computation SVA contains Euclidean column norms of the */
/* > iterated matrices in the array A. */
/* > - For WORK(1) .NE. WORK(2): The singular values of A are */
/* > (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if */
/* > sigma_max(A) overflows or if small singular values have been */
/* > saved from underflow by scaling the input matrix A. */
/* > - If JOBR='R' then some of the singular values may be returned */
/* > as exact zeros obtained by "set to zero" because they are */
/* > below the numerical rank threshold or are denormalized numbers. */
/* > \endverbatim */
/* > */
/* > \param[out] U */
/* > \verbatim */
/* > U is COMPLEX array, dimension ( LDU, N ) or ( LDU, M ) */
/* > If JOBU = 'U', then U contains on exit the M-by-N matrix of */
/* > the left singular vectors. */
/* > If JOBU = 'F', then U contains on exit the M-by-M matrix of */
/* > the left singular vectors, including an ONB */
/* > of the orthogonal complement of the Range(A). */
/* > If JOBU = 'W' .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N), */
/* > then U is used as workspace if the procedure */
/* > replaces A with A^*. In that case, [V] is computed */
/* > in U as left singular vectors of A^* and then */
/* > copied back to the V array. This 'W' option is just */
/* > a reminder to the caller that in this case U is */
/* > reserved as workspace of length N*N. */
/* > If JOBU = 'N' U is not referenced, unless JOBT='T'. */
/* > \endverbatim */
/* > */
/* > \param[in] LDU */
/* > \verbatim */
/* > LDU is INTEGER */
/* > The leading dimension of the array U, LDU >= 1. */
/* > IF JOBU = 'U' or 'F' or 'W', then LDU >= M. */
/* > \endverbatim */
/* > */
/* > \param[out] V */
/* > \verbatim */
/* > V is COMPLEX array, dimension ( LDV, N ) */
/* > If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of */
/* > the right singular vectors; */
/* > If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N), */
/* > then V is used as workspace if the pprocedure */
/* > replaces A with A^*. In that case, [U] is computed */
/* > in V as right singular vectors of A^* and then */
/* > copied back to the U array. This 'W' option is just */
/* > a reminder to the caller that in this case V is */
/* > reserved as workspace of length N*N. */
/* > If JOBV = 'N' V is not referenced, unless JOBT='T'. */
/* > \endverbatim */
/* > */
/* > \param[in] LDV */
/* > \verbatim */
/* > LDV is INTEGER */
/* > The leading dimension of the array V, LDV >= 1. */
/* > If JOBV = 'V' or 'J' or 'W', then LDV >= N. */
/* > \endverbatim */
/* > */
/* > \param[out] CWORK */
/* > \verbatim */
/* > CWORK is COMPLEX array, dimension (MAX(2,LWORK)) */
/* > If the call to CGEJSV is a workspace query (indicated by LWORK=-1 or */
/* > LRWORK=-1), then on exit CWORK(1) contains the required length of */
/* > CWORK for the job parameters used in the call. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > Length of CWORK to confirm proper allocation of workspace. */
/* > LWORK depends on the job: */
/* > */
/* > 1. If only SIGMA is needed ( JOBU = 'N', JOBV = 'N' ) and */
/* > 1.1 .. no scaled condition estimate required (JOBA.NE.'E'.AND.JOBA.NE.'G'): */
/* > LWORK >= 2*N+1. This is the minimal requirement. */
/* > ->> For optimal performance (blocked code) the optimal value */
/* > is LWORK >= N + (N+1)*NB. Here NB is the optimal */
/* > block size for CGEQP3 and CGEQRF. */
/* > In general, optimal LWORK is computed as */
/* > LWORK >= f2cmax(N+LWORK(CGEQP3),N+LWORK(CGEQRF), LWORK(CGESVJ)). */
/* > 1.2. .. an estimate of the scaled condition number of A is */
/* > required (JOBA='E', or 'G'). In this case, LWORK the minimal */
/* > requirement is LWORK >= N*N + 2*N. */
/* > ->> For optimal performance (blocked code) the optimal value */
/* > is LWORK >= f2cmax(N+(N+1)*NB, N*N+2*N)=N**2+2*N. */
/* > In general, the optimal length LWORK is computed as */
/* > LWORK >= f2cmax(N+LWORK(CGEQP3),N+LWORK(CGEQRF), LWORK(CGESVJ), */
/* > N*N+LWORK(CPOCON)). */
/* > 2. If SIGMA and the right singular vectors are needed (JOBV = 'V'), */
/* > (JOBU = 'N') */
/* > 2.1 .. no scaled condition estimate requested (JOBE = 'N'): */
/* > -> the minimal requirement is LWORK >= 3*N. */
/* > -> For optimal performance, */
/* > LWORK >= f2cmax(N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB, */
/* > where NB is the optimal block size for CGEQP3, CGEQRF, CGELQ, */
/* > CUNMLQ. In general, the optimal length LWORK is computed as */
/* > LWORK >= f2cmax(N+LWORK(CGEQP3), N+LWORK(CGESVJ), */
/* > N+LWORK(CGELQF), 2*N+LWORK(CGEQRF), N+LWORK(CUNMLQ)). */
/* > 2.2 .. an estimate of the scaled condition number of A is */
/* > required (JOBA='E', or 'G'). */
/* > -> the minimal requirement is LWORK >= 3*N. */
/* > -> For optimal performance, */
/* > LWORK >= f2cmax(N+(N+1)*NB, 2*N,2*N+N*NB)=2*N+N*NB, */
/* > where NB is the optimal block size for CGEQP3, CGEQRF, CGELQ, */
/* > CUNMLQ. In general, the optimal length LWORK is computed as */
/* > LWORK >= f2cmax(N+LWORK(CGEQP3), LWORK(CPOCON), N+LWORK(CGESVJ), */
/* > N+LWORK(CGELQF), 2*N+LWORK(CGEQRF), N+LWORK(CUNMLQ)). */
/* > 3. If SIGMA and the left singular vectors are needed */
/* > 3.1 .. no scaled condition estimate requested (JOBE = 'N'): */
/* > -> the minimal requirement is LWORK >= 3*N. */
/* > -> For optimal performance: */
/* > if JOBU = 'U' :: LWORK >= f2cmax(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB, */
/* > where NB is the optimal block size for CGEQP3, CGEQRF, CUNMQR. */
/* > In general, the optimal length LWORK is computed as */
/* > LWORK >= f2cmax(N+LWORK(CGEQP3), 2*N+LWORK(CGEQRF), N+LWORK(CUNMQR)). */
/* > 3.2 .. an estimate of the scaled condition number of A is */
/* > required (JOBA='E', or 'G'). */
/* > -> the minimal requirement is LWORK >= 3*N. */
/* > -> For optimal performance: */
/* > if JOBU = 'U' :: LWORK >= f2cmax(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB, */
/* > where NB is the optimal block size for CGEQP3, CGEQRF, CUNMQR. */
/* > In general, the optimal length LWORK is computed as */
/* > LWORK >= f2cmax(N+LWORK(CGEQP3),N+LWORK(CPOCON), */
/* > 2*N+LWORK(CGEQRF), N+LWORK(CUNMQR)). */
/* > */
/* > 4. If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and */
/* > 4.1. if JOBV = 'V' */
/* > the minimal requirement is LWORK >= 5*N+2*N*N. */
/* > 4.2. if JOBV = 'J' the minimal requirement is */
/* > LWORK >= 4*N+N*N. */
/* > In both cases, the allocated CWORK can accommodate blocked runs */
/* > of CGEQP3, CGEQRF, CGELQF, CUNMQR, CUNMLQ. */
/* > */
/* > If the call to CGEJSV is a workspace query (indicated by LWORK=-1 or */
/* > LRWORK=-1), then on exit CWORK(1) contains the optimal and CWORK(2) contains the */
/* > minimal length of CWORK for the job parameters used in the call. */
/* > \endverbatim */
/* > */
/* > \param[out] RWORK */
/* > \verbatim */
/* > RWORK is REAL array, dimension (MAX(7,LWORK)) */
/* > On exit, */
/* > RWORK(1) = Determines the scaling factor SCALE = RWORK(2) / RWORK(1) */
/* > such that SCALE*SVA(1:N) are the computed singular values */
/* > of A. (See the description of SVA().) */
/* > RWORK(2) = See the description of RWORK(1). */
/* > RWORK(3) = SCONDA is an estimate for the condition number of */
/* > column equilibrated A. (If JOBA = 'E' or 'G') */
/* > SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1). */
/* > It is computed using SPOCON. It holds */
/* > N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA */
/* > where R is the triangular factor from the QRF of A. */
/* > However, if R is truncated and the numerical rank is */
/* > determined to be strictly smaller than N, SCONDA is */
/* > returned as -1, thus indicating that the smallest */
/* > singular values might be lost. */
/* > */
/* > If full SVD is needed, the following two condition numbers are */
/* > useful for the analysis of the algorithm. They are provied for */
/* > a developer/implementer who is familiar with the details of */
/* > the method. */
/* > */
/* > RWORK(4) = an estimate of the scaled condition number of the */
/* > triangular factor in the first QR factorization. */
/* > RWORK(5) = an estimate of the scaled condition number of the */
/* > triangular factor in the second QR factorization. */
/* > The following two parameters are computed if JOBT = 'T'. */
/* > They are provided for a developer/implementer who is familiar */
/* > with the details of the method. */
/* > RWORK(6) = the entropy of A^* * A :: this is the Shannon entropy */
/* > of diag(A^* * A) / Trace(A^* * A) taken as point in the */
/* > probability simplex. */
/* > RWORK(7) = the entropy of A * A^*. (See the description of RWORK(6).) */
/* > If the call to CGEJSV is a workspace query (indicated by LWORK=-1 or */
/* > LRWORK=-1), then on exit RWORK(1) contains the required length of */
/* > RWORK for the job parameters used in the call. */
/* > \endverbatim */
/* > */
/* > \param[in] LRWORK */
/* > \verbatim */
/* > LRWORK is INTEGER */
/* > Length of RWORK to confirm proper allocation of workspace. */
/* > LRWORK depends on the job: */
/* > */
/* > 1. If only the singular values are requested i.e. if */
/* > LSAME(JOBU,'N') .AND. LSAME(JOBV,'N') */
/* > then: */
/* > 1.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'), */
/* > then: LRWORK = f2cmax( 7, 2 * M ). */
/* > 1.2. Otherwise, LRWORK = f2cmax( 7, N ). */
/* > 2. If singular values with the right singular vectors are requested */
/* > i.e. if */
/* > (LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) .AND. */
/* > .NOT.(LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) */
/* > then: */
/* > 2.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'), */
/* > then LRWORK = f2cmax( 7, 2 * M ). */
/* > 2.2. Otherwise, LRWORK = f2cmax( 7, N ). */
/* > 3. If singular values with the left singular vectors are requested, i.e. if */
/* > (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND. */
/* > .NOT.(LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) */
/* > then: */
/* > 3.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'), */
/* > then LRWORK = f2cmax( 7, 2 * M ). */
/* > 3.2. Otherwise, LRWORK = f2cmax( 7, N ). */
/* > 4. If singular values with both the left and the right singular vectors */
/* > are requested, i.e. if */
/* > (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND. */
/* > (LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) */
/* > then: */
/* > 4.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'), */
/* > then LRWORK = f2cmax( 7, 2 * M ). */
/* > 4.2. Otherwise, LRWORK = f2cmax( 7, N ). */
/* > */
/* > If, on entry, LRWORK = -1 or LWORK=-1, a workspace query is assumed and */
/* > the length of RWORK is returned in RWORK(1). */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, of dimension at least 4, that further depends */
/* > on the job: */
/* > */
/* > 1. If only the singular values are requested then: */
/* > If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) */
/* > then the length of IWORK is N+M; otherwise the length of IWORK is N. */
/* > 2. If the singular values and the right singular vectors are requested then: */
/* > If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) */
/* > then the length of IWORK is N+M; otherwise the length of IWORK is N. */
/* > 3. If the singular values and the left singular vectors are requested then: */
/* > If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) */
/* > then the length of IWORK is N+M; otherwise the length of IWORK is N. */
/* > 4. If the singular values with both the left and the right singular vectors */
/* > are requested, then: */
/* > 4.1. If LSAME(JOBV,'J') the length of IWORK is determined as follows: */
/* > If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) */
/* > then the length of IWORK is N+M; otherwise the length of IWORK is N. */
/* > 4.2. If LSAME(JOBV,'V') the length of IWORK is determined as follows: */
/* > If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) */
/* > then the length of IWORK is 2*N+M; otherwise the length of IWORK is 2*N. */
/* > */
/* > On exit, */
/* > IWORK(1) = the numerical rank determined after the initial */
/* > QR factorization with pivoting. See the descriptions */
/* > of JOBA and JOBR. */
/* > IWORK(2) = the number of the computed nonzero singular values */
/* > IWORK(3) = if nonzero, a warning message: */
/* > If IWORK(3) = 1 then some of the column norms of A */
/* > were denormalized floats. The requested high accuracy */
/* > is not warranted by the data. */
/* > IWORK(4) = 1 or -1. If IWORK(4) = 1, then the procedure used A^* to */
/* > do the job as specified by the JOB parameters. */
/* > If the call to CGEJSV is a workspace query (indicated by LWORK = -1 and */
/* > LRWORK = -1), then on exit IWORK(1) contains the required length of */
/* > IWORK for the job parameters used in the call. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > < 0: if INFO = -i, then the i-th argument had an illegal value. */
/* > = 0: successful exit; */
/* > > 0: CGEJSV did not converge in the maximal allowed number */
/* > of sweeps. The computed values may be inaccurate. */
/* > \endverbatim */