- Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathcgemmf.f
414 lines (414 loc) · 12.7 KB
/
cgemmf.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
SUBROUTINECGEMMF(TRANA,TRANB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
* .. Scalar Arguments ..
COMPLEX ALPHA,BETA
INTEGER K,LDA,LDB,LDC,M,N
CHARACTER TRANA,TRANB
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
* ..
*
* Purpose
* =======
*
* CGEMM performs one of the matrix-matrix operations
*
* C := alpha*op( A )*op( B ) + beta*C,
*
* where op( X ) is one of
*
* op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ),
*
* alpha and beta are scalars, and A, B and C are matrices, with op( A )
* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
*
* Arguments
* ==========
*
* TRANA - CHARACTER*1.
* On entry, TRANA specifies the form of op( A ) to be used in
* the matrix multiplication as follows:
*
* TRANA = 'N' or 'n', op( A ) = A.
*
* TRANA = 'T' or 't', op( A ) = A'.
*
* TRANA = 'C' or 'c', op( A ) = conjg( A' ).
*
* Unchanged on exit.
*
* TRANB - CHARACTER*1.
* On entry, TRANB specifies the form of op( B ) to be used in
* the matrix multiplication as follows:
*
* TRANB = 'N' or 'n', op( B ) = B.
*
* TRANB = 'T' or 't', op( B ) = B'.
*
* TRANB = 'C' or 'c', op( B ) = conjg( B' ).
*
* Unchanged on exit.
*
* M - INTEGER.
* On entry, M specifies the number of rows of the matrix
* op( A ) and of the matrix C. M must be at least zero.
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the number of columns of the matrix
* op( B ) and the number of columns of the matrix C. N must be
* at least zero.
* Unchanged on exit.
*
* K - INTEGER.
* On entry, K specifies the number of columns of the matrix
* op( A ) and the number of rows of the matrix op( B ). K must
* be at least zero.
* Unchanged on exit.
*
* ALPHA - COMPLEX .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
* k when TRANA = 'N' or 'n', and is m otherwise.
* Before entry with TRANA = 'N' or 'n', the leading m by k
* part of the array A must contain the matrix A, otherwise
* the leading k by m part of the array A must contain the
* matrix A.
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. When TRANA = 'N' or 'n' then
* LDA must be at least max( 1, m ), otherwise LDA must be at
* least max( 1, k ).
* Unchanged on exit.
*
* B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is
* n when TRANB = 'N' or 'n', and is k otherwise.
* Before entry with TRANB = 'N' or 'n', the leading k by n
* part of the array B must contain the matrix B, otherwise
* the leading n by k part of the array B must contain the
* matrix B.
* Unchanged on exit.
*
* LDB - INTEGER.
* On entry, LDB specifies the first dimension of B as declared
* in the calling (sub) program. When TRANB = 'N' or 'n' then
* LDB must be at least max( 1, k ), otherwise LDB must be at
* least max( 1, n ).
* Unchanged on exit.
*
* BETA - COMPLEX .
* On entry, BETA specifies the scalar beta. When BETA is
* supplied as zero then C need not be set on input.
* Unchanged on exit.
*
* C - COMPLEX array of DIMENSION ( LDC, n ).
* Before entry, the leading m by n part of the array C must
* contain the matrix C, except when beta is zero, in which
* case C need not be set on entry.
* On exit, the array C is overwritten by the m by n matrix
* ( alpha*op( A )*op( B ) + beta*C ).
*
* LDC - INTEGER.
* On entry, LDC specifies the first dimension of C as declared
* in the calling (sub) program. LDC must be at least
* max( 1, m ).
* Unchanged on exit.
*
*
* Level 3 Blas routine.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,MAX
* ..
* .. Local Scalars ..
COMPLEX TEMP
INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
LOGICAL CONJA,CONJB,NOTA,NOTB
* ..
* .. Parameters ..
COMPLEX ONE
PARAMETER (ONE= (1.0E+0,0.0E+0))
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
*
* Set NOTA and NOTB as true if A and B respectively are not
* conjugated or transposed, set CONJA and CONJB as true if A and
* B respectively are to be transposed but not conjugated and set
* NROWA, NCOLA and NROWB as the number of rows and columns of A
* and the number of rows of B respectively.
*
NOTA = LSAME(TRANA,'N')
NOTB = LSAME(TRANB,'N')
CONJA = LSAME(TRANA,'C')
CONJB = LSAME(TRANB,'C')
IF (NOTA) THEN
NROWA = M
NCOLA = K
ELSE
NROWA = K
NCOLA = M
END IF
IF (NOTB) THEN
NROWB = K
ELSE
NROWB = N
END IF
*
* Test the input parameters.
*
INFO =0
IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND.
+ (.NOT.LSAME(TRANA,'T'))) THEN
INFO =1
ELSEIF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND.
+ (.NOT.LSAME(TRANB,'T'))) THEN
INFO =2
ELSEIF (M.LT.0) THEN
INFO =3
ELSEIF (N.LT.0) THEN
INFO =4
ELSEIF (K.LT.0) THEN
INFO =5
ELSEIF (LDA.LT.MAX(1,NROWA)) THEN
INFO =8
ELSEIF (LDB.LT.MAX(1,NROWB)) THEN
INFO =10
ELSEIF (LDC.LT.MAX(1,M)) THEN
INFO =13
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CGEMM ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
*
* And when alpha.eq.zero.
*
IF (ALPHA.EQ.ZERO) THEN
IF (BETA.EQ.ZERO) THEN
DO20 J =1,N
DO10 I =1,M
C(I,J) = ZERO
10CONTINUE
20CONTINUE
ELSE
DO40 J =1,N
DO30 I =1,M
C(I,J) = BETA*C(I,J)
30CONTINUE
40CONTINUE
END IF
RETURN
END IF
*
* Start the operations.
*
IF (NOTB) THEN
IF (NOTA) THEN
*
* Form C := alpha*A*B + beta*C.
*
DO90 J =1,N
IF (BETA.EQ.ZERO) THEN
DO50 I =1,M
C(I,J) = ZERO
50CONTINUE
ELSEIF (BETA.NE.ONE) THEN
DO60 I =1,M
C(I,J) = BETA*C(I,J)
60CONTINUE
END IF
DO80 L =1,K
IF (B(L,J).NE.ZERO) THEN
TEMP = ALPHA*B(L,J)
DO70 I =1,M
C(I,J) = C(I,J) + TEMP*A(I,L)
70CONTINUE
END IF
80CONTINUE
90CONTINUE
ELSEIF (CONJA) THEN
*
* Form C := alpha*conjg( A' )*B + beta*C.
*
DO120 J =1,N
DO110 I =1,M
TEMP = ZERO
DO100 L =1,K
TEMP = TEMP +CONJG(A(L,I))*B(L,J)
100CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = ALPHA*TEMP
ELSE
C(I,J) = ALPHA*TEMP + BETA*C(I,J)
END IF
110CONTINUE
120CONTINUE
ELSE
*
* Form C := alpha*A'*B + beta*C
*
DO150 J =1,N
DO140 I =1,M
TEMP = ZERO
DO130 L =1,K
TEMP = TEMP + A(L,I)*B(L,J)
130CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = ALPHA*TEMP
ELSE
C(I,J) = ALPHA*TEMP + BETA*C(I,J)
END IF
140CONTINUE
150CONTINUE
END IF
ELSEIF (NOTA) THEN
IF (CONJB) THEN
*
* Form C := alpha*A*conjg( B' ) + beta*C.
*
DO200 J =1,N
IF (BETA.EQ.ZERO) THEN
DO160 I =1,M
C(I,J) = ZERO
160CONTINUE
ELSEIF (BETA.NE.ONE) THEN
DO170 I =1,M
C(I,J) = BETA*C(I,J)
170CONTINUE
END IF
DO190 L =1,K
IF (B(J,L).NE.ZERO) THEN
TEMP = ALPHA*CONJG(B(J,L))
DO180 I =1,M
C(I,J) = C(I,J) + TEMP*A(I,L)
180CONTINUE
END IF
190CONTINUE
200CONTINUE
ELSE
*
* Form C := alpha*A*B' + beta*C
*
DO250 J =1,N
IF (BETA.EQ.ZERO) THEN
DO210 I =1,M
C(I,J) = ZERO
210CONTINUE
ELSEIF (BETA.NE.ONE) THEN
DO220 I =1,M
C(I,J) = BETA*C(I,J)
220CONTINUE
END IF
DO240 L =1,K
IF (B(J,L).NE.ZERO) THEN
TEMP = ALPHA*B(J,L)
DO230 I =1,M
C(I,J) = C(I,J) + TEMP*A(I,L)
230CONTINUE
END IF
240CONTINUE
250CONTINUE
END IF
ELSEIF (CONJA) THEN
IF (CONJB) THEN
*
* Form C := alpha*conjg( A' )*conjg( B' ) + beta*C.
*
DO280 J =1,N
DO270 I =1,M
TEMP = ZERO
DO260 L =1,K
TEMP = TEMP +CONJG(A(L,I))*CONJG(B(J,L))
260CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = ALPHA*TEMP
ELSE
C(I,J) = ALPHA*TEMP + BETA*C(I,J)
END IF
270CONTINUE
280CONTINUE
ELSE
*
* Form C := alpha*conjg( A' )*B' + beta*C
*
DO310 J =1,N
DO300 I =1,M
TEMP = ZERO
DO290 L =1,K
TEMP = TEMP +CONJG(A(L,I))*B(J,L)
290CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = ALPHA*TEMP
ELSE
C(I,J) = ALPHA*TEMP + BETA*C(I,J)
END IF
300CONTINUE
310CONTINUE
END IF
ELSE
IF (CONJB) THEN
*
* Form C := alpha*A'*conjg( B' ) + beta*C
*
DO340 J =1,N
DO330 I =1,M
TEMP = ZERO
DO320 L =1,K
TEMP = TEMP + A(L,I)*CONJG(B(J,L))
320CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = ALPHA*TEMP
ELSE
C(I,J) = ALPHA*TEMP + BETA*C(I,J)
END IF
330CONTINUE
340CONTINUE
ELSE
*
* Form C := alpha*A'*B' + beta*C
*
DO370 J =1,N
DO360 I =1,M
TEMP = ZERO
DO350 L =1,K
TEMP = TEMP + A(L,I)*B(J,L)
350CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = ALPHA*TEMP
ELSE
C(I,J) = ALPHA*TEMP + BETA*C(I,J)
END IF
360CONTINUE
370CONTINUE
END IF
END IF
*
RETURN
*
* End of CGEMM .
*
END