- Notifications
You must be signed in to change notification settings - Fork 234
/
Copy pathsha.cpp
397 lines (336 loc) · 11.3 KB
/
sha.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
// NIST Secure Hash Algorithm
// heavily modified by Uwe Hollerbach <uh@alumni.caltech edu>
// from Peter C. Gutmann's implementation as found in
// Applied Cryptography by Bruce Schneier
// This code is in the public domain
// Adapted and added to firebird svn tree - A.Peshkov, 2004
#ifndef SHA_H
#defineSHA_H
#include<stdlib.h>
#include<stdio.h>
#include"../common/sha.h"
#include"../common/classes/array.h"
#include"../common/os/guid.h"
#include"../common/utils_proto.h"
usingnamespaceFirebird;
namespace
{
#defineSHA_BLOCKSIZE Sha1::BLOCK_SIZE
#defineSHA_DIGESTSIZE Sha1::HASH_SIZE
typedef Sha1::ShaInfo SHA_INFO;
voidsha_init(SHA_INFO *);
voidsha_update(SHA_INFO *, const BYTE *, size_t);
voidsha_final(unsignedchar [SHA_DIGESTSIZE], SHA_INFO *);
#defineSHA_VERSION1
#include"firebird.h"
#ifdef WORDS_BIGENDIAN
# if SIZEOF_LONG == 4
# defineSHA_BYTE_ORDER4321
# elif SIZEOF_LONG == 8
# defineSHA_BYTE_ORDER87654321
# endif
#else
# if SIZEOF_LONG == 4
# defineSHA_BYTE_ORDER1234
# elif SIZEOF_LONG == 8
# defineSHA_BYTE_ORDER12345678
# endif
#endif
#endif // SHA_H
/* (PD) 2001 The Bitzi Corporation
* Please see file COPYING or http://web.archive.org/web/20120315075909/http://bitzi.com/publicdomain
* for more info.
*
* NIST Secure Hash Algorithm
* heavily modified by Uwe Hollerbach <uh@alumni.caltech edu>
* from Peter C. Gutmann's implementation as found in
* Applied Cryptography by Bruce Schneier
* Further modifications to include the "UNRAVEL" stuff, below
*
* This code is in the public domain
*
*/
// UNRAVEL should be fastest & biggest
// UNROLL_LOOPS should be just as big, but slightly slower
// both undefined should be smallest and slowest
#defineUNRAVEL
// #define UNROLL_LOOPS
// SHA f()-functions
#definef1(x, y, z) ((x & y) | (~x & z))
#definef2(x, y, z) (x ^ y ^ z)
#definef3(x, y, z) ((x & y) | (x & z) | (y & z))
#definef4(x, y, z) (x ^ y ^ z)
// SHA constants
#defineCONST10x5a827999L
#defineCONST20x6ed9eba1L
#defineCONST30x8f1bbcdcL
#defineCONST40xca62c1d6L
// truncate to 32 bits -- should be a null op on 32-bit machines
#defineT32(x) ((x) & 0xffffffffL)
// 32-bit rotate
#defineR32(x, n) T32(((x << n) | (x >> (32 - n))))
// the generic case, for when the overall rotation is not unraveled
#defineFG(n) \
T = T32(R32(A, 5) + f##n(B, C, D) + E + *WP++ + CONST##n); \
E = D; D = C; C = R32(B, 30); B = A; A = T
// specific cases, for when the overall rotation is unraveled
#defineFA(n) \
T = T32(R32(A, 5) + f##n(B, C, D) + E + *WP++ + CONST##n); B = R32(B, 30)
#defineFB(n) \
E = T32(R32(T, 5) + f##n(A, B, C) + D + *WP++ + CONST##n); A = R32(A, 30)
#defineFC(n) \
D = T32(R32(E, 5) + f##n(T, A, B) + C + *WP++ + CONST##n); T = R32(T, 30)
#defineFD(n) \
C = T32(R32(D, 5) + f##n(E, T, A) + B + *WP++ + CONST##n); E = R32(E, 30)
#defineFE(n) \
B = T32(R32(C, 5) + f##n(D, E, T) + A + *WP++ + CONST##n); D = R32(D, 30)
#defineFT(n) \
A = T32(R32(B, 5) + f##n(C, D, E) + T + *WP++ + CONST##n); C = R32(C, 30)
// do SHA transformation
staticvoidsha_transform(SHA_INFO *sha_info)
{
int i;
Sha1::LONG W[80];
const BYTE* dp = sha_info->data;
/*
the following makes sure that at least one code block below is
traversed or an error is reported, without the necessity for nested
preprocessor if/else/endif blocks, which are a great pain in the
nether regions of the anatomy...
*/
#undef SWAP_DONE
#if (SHA_BYTE_ORDER == 1234)
#defineSWAP_DONE
for (i = 0; i < 16; ++i)
{
const Sha1::LONG T = *((Sha1::LONG *) dp);
dp += 4;
W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
}
#endif// SHA_BYTE_ORDER == 1234
#if (SHA_BYTE_ORDER == 4321)
#defineSWAP_DONE
for (i = 0; i < 16; ++i)
{
const Sha1::LONG T = *((Sha1::LONG *) dp);
dp += 4;
W[i] = T32(T);
}
#endif// SHA_BYTE_ORDER == 4321
#if (SHA_BYTE_ORDER == 12345678)
#defineSWAP_DONE
for (i = 0; i < 16; i += 2)
{
Sha1::LONG T = *((Sha1::LONG *) dp);
dp += 8;
W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
T >>= 32;
W[i + 1] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
}
#endif// SHA_BYTE_ORDER == 12345678
#if (SHA_BYTE_ORDER == 87654321)
#defineSWAP_DONE
for (i = 0; i < 16; i += 2)
{
const Sha1::LONG T = *((Sha1::LONG *) dp);
dp += 8;
W[i] = T32(T >> 32);
W[i + 1] = T32(T);
}
#endif// SHA_BYTE_ORDER == 87654321
#ifndef SWAP_DONE
#error Unknown byte order -- you need to add code here
#endif// SWAP_DONE
for (i = 16; i < 80; ++i)
{
W[i] = W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16];
#if (SHA_VERSION == 1)
W[i] = R32(W[i], 1);
#endif// SHA_VERSION
}
Sha1::LONG A = sha_info->digest[0];
Sha1::LONG B = sha_info->digest[1];
Sha1::LONG C = sha_info->digest[2];
Sha1::LONG D = sha_info->digest[3];
Sha1::LONG E = sha_info->digest[4];
const Sha1::LONG* WP = W;
Sha1::LONG T;
#ifdef UNRAVEL
FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1);
FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1);
FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2);
FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2);
FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3);
FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3);
FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4);
FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4);
sha_info->digest[0] = T32(sha_info->digest[0] + E);
sha_info->digest[1] = T32(sha_info->digest[1] + T);
sha_info->digest[2] = T32(sha_info->digest[2] + A);
sha_info->digest[3] = T32(sha_info->digest[3] + B);
sha_info->digest[4] = T32(sha_info->digest[4] + C);
#else// !UNRAVEL
#ifdef UNROLL_LOOPS
FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
#else// !UNROLL_LOOPS
for (i = 0; i < 20; ++i) { FG(1); }
for (i = 20; i < 40; ++i) { FG(2); }
for (i = 40; i < 60; ++i) { FG(3); }
for (i = 60; i < 80; ++i) { FG(4); }
#endif// !UNROLL_LOOPS
sha_info->digest[0] = T32(sha_info->digest[0] + A);
sha_info->digest[1] = T32(sha_info->digest[1] + B);
sha_info->digest[2] = T32(sha_info->digest[2] + C);
sha_info->digest[3] = T32(sha_info->digest[3] + D);
sha_info->digest[4] = T32(sha_info->digest[4] + E);
#endif// !UNRAVEL
}
// initialize the SHA digest
voidsha_init(SHA_INFO *sha_info)
{
sha_info->digest[0] = 0x67452301L;
sha_info->digest[1] = 0xefcdab89L;
sha_info->digest[2] = 0x98badcfeL;
sha_info->digest[3] = 0x10325476L;
sha_info->digest[4] = 0xc3d2e1f0L;
sha_info->count_lo = 0L;
sha_info->count_hi = 0L;
sha_info->local = 0;
}
// update the SHA digest
voidsha_update(SHA_INFO *sha_info, const BYTE *buffer, size_t count)
{
const Sha1::LONG clo = T32(sha_info->count_lo + ((Sha1::LONG) count << 3));
if (clo < sha_info->count_lo) {
++sha_info->count_hi;
}
sha_info->count_lo = clo;
sha_info->count_hi += (Sha1::LONG) count >> 29;
if (sha_info->local)
{
size_t i = SHA_BLOCKSIZE - sha_info->local;
if (i > count) {
i = count;
}
memcpy(sha_info->data + sha_info->local, buffer, i);
count -= i;
buffer += i;
sha_info->local += i;
if (sha_info->local == SHA_BLOCKSIZE) {
sha_transform(sha_info);
}
else {
return;
}
}
while (count >= SHA_BLOCKSIZE)
{
memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
buffer += SHA_BLOCKSIZE;
count -= SHA_BLOCKSIZE;
sha_transform(sha_info);
}
memcpy(sha_info->data, buffer, count);
sha_info->local = count;
}
// finish computing the SHA digest
voidsha_final(unsignedchar digest[SHA_DIGESTSIZE], SHA_INFO *sha_info)
{
const Sha1::LONG lo_bit_count = sha_info->count_lo;
const Sha1::LONG hi_bit_count = sha_info->count_hi;
unsignedint count = (int) ((lo_bit_count >> 3) & 0x3f);
sha_info->data[count++] = 0x80;
if (count > SHA_BLOCKSIZE - 8)
{
memset(sha_info->data + count, 0, SHA_BLOCKSIZE - count);
sha_transform(sha_info);
memset(sha_info->data, 0, SHA_BLOCKSIZE - 8);
}
else {
memset(sha_info->data + count, 0, SHA_BLOCKSIZE - 8 - count);
}
sha_info->data[56] = (unsignedchar) ((hi_bit_count >> 24) & 0xff);
sha_info->data[57] = (unsignedchar) ((hi_bit_count >> 16) & 0xff);
sha_info->data[58] = (unsignedchar) ((hi_bit_count >> 8) & 0xff);
sha_info->data[59] = (unsignedchar) ((hi_bit_count >> 0) & 0xff);
sha_info->data[60] = (unsignedchar) ((lo_bit_count >> 24) & 0xff);
sha_info->data[61] = (unsignedchar) ((lo_bit_count >> 16) & 0xff);
sha_info->data[62] = (unsignedchar) ((lo_bit_count >> 8) & 0xff);
sha_info->data[63] = (unsignedchar) ((lo_bit_count >> 0) & 0xff);
sha_transform(sha_info);
digest[ 0] = (unsignedchar) ((sha_info->digest[0] >> 24) & 0xff);
digest[ 1] = (unsignedchar) ((sha_info->digest[0] >> 16) & 0xff);
digest[ 2] = (unsignedchar) ((sha_info->digest[0] >> 8) & 0xff);
digest[ 3] = (unsignedchar) ((sha_info->digest[0] ) & 0xff);
digest[ 4] = (unsignedchar) ((sha_info->digest[1] >> 24) & 0xff);
digest[ 5] = (unsignedchar) ((sha_info->digest[1] >> 16) & 0xff);
digest[ 6] = (unsignedchar) ((sha_info->digest[1] >> 8) & 0xff);
digest[ 7] = (unsignedchar) ((sha_info->digest[1] ) & 0xff);
digest[ 8] = (unsignedchar) ((sha_info->digest[2] >> 24) & 0xff);
digest[ 9] = (unsignedchar) ((sha_info->digest[2] >> 16) & 0xff);
digest[10] = (unsignedchar) ((sha_info->digest[2] >> 8) & 0xff);
digest[11] = (unsignedchar) ((sha_info->digest[2] ) & 0xff);
digest[12] = (unsignedchar) ((sha_info->digest[3] >> 24) & 0xff);
digest[13] = (unsignedchar) ((sha_info->digest[3] >> 16) & 0xff);
digest[14] = (unsignedchar) ((sha_info->digest[3] >> 8) & 0xff);
digest[15] = (unsignedchar) ((sha_info->digest[3] ) & 0xff);
digest[16] = (unsignedchar) ((sha_info->digest[4] >> 24) & 0xff);
digest[17] = (unsignedchar) ((sha_info->digest[4] >> 16) & 0xff);
digest[18] = (unsignedchar) ((sha_info->digest[4] >> 8) & 0xff);
digest[19] = (unsignedchar) ((sha_info->digest[4] ) & 0xff);
}
} // anonymous namespace
namespaceFirebird {
voidSha1::hashBased64(string& hash, const string& data)
{
SHA_INFO si;
sha_init(&si);
sha_update(&si, reinterpret_cast<constunsignedchar*>(data.c_str()), data.length());
UCharBuffer b;
sha_final(b.getBuffer(SHA_DIGESTSIZE), &si);
fb_utils::base64(hash, b);
}
Sha1::Sha1()
: active(false)
{
reset();
}
voidSha1::process(size_t length, constvoid* bytes)
{
sha_update(&handle, static_cast<constunsignedchar*>(bytes), length);
}
voidSha1::getHash(UCharBuffer& hash)
{
fb_assert(active);
sha_final(hash.getBuffer(HASH_SIZE), &handle);
}
voidSha1::reset()
{
clear();
sha_init(&handle);
active = true;
}
Sha1::~Sha1()
{
clear();
}
voidSha1::clear()
{
if (active)
{
unsignedchar tmp[HASH_SIZE];
sha_final(tmp, &handle);
active = false;
}
}
} // namespace Firebird