一个输入操作通常包括两个阶段:
- 等待数据准备好
- 从内核向进程复制数据
对于一个套接字上的输入操作,第一步通常涉及等待数据从网络中到达。当所等待数据到达时,它被复制到内核中的某个缓冲区。第二步就是把数据从内核缓冲区复制到应用进程缓冲区。
Unix 有五种 I/O 模型:
- 阻塞式 I/O
- 非阻塞式 I/O
- I/O 复用(select 和 poll)
- 信号驱动式 I/O(SIGIO)
- 异步 I/O(AIO)
应用进程被阻塞,直到数据从内核缓冲区复制到应用进程缓冲区中才返回。
应该注意到,在阻塞的过程中,其它应用进程还可以执行,因此阻塞不意味着整个操作系统都被阻塞。因为其它应用进程还可以执行,所以不消耗 CPU 时间,这种模型的 CPU 利用率会比较高。
下图中,recvfrom() 用于接收 Socket 传来的数据,并复制到应用进程的缓冲区 buf 中。这里把 recvfrom() 当成系统调用。
ssize_trecvfrom(intsockfd, void*buf, size_tlen, intflags, structsockaddr*src_addr, socklen_t*addrlen);
应用进程执行系统调用之后,内核返回一个错误码。应用进程可以继续执行,但是需要不断的执行系统调用来获知 I/O 是否完成,这种方式称为轮询(polling)。
由于 CPU 要处理更多的系统调用,因此这种模型的 CPU 利用率比较低。
使用 select 或者 poll 等待数据,并且可以等待多个套接字中的任何一个变为可读。这一过程会被阻塞,当某一个套接字可读时返回,之后再使用 recvfrom 把数据从内核复制到进程中。
它可以让单个进程具有处理多个 I/O 事件的能力。又被称为 Event Driven I/O,即事件驱动 I/O。
如果一个 Web 服务器没有 I/O 复用,那么每一个 Socket 连接都需要创建一个线程去处理。如果同时有几万个连接,那么就需要创建相同数量的线程。相比于多进程和多线程技术,I/O 复用不需要进程线程创建和切换的开销,系统开销更小。
应用进程使用 sigaction 系统调用,内核立即返回,应用进程可以继续执行,也就是说等待数据阶段应用进程是非阻塞的。内核在数据到达时向应用进程发送 SIGIO 信号,应用进程收到之后在信号处理程序中调用 recvfrom 将数据从内核复制到应用进程中。
相比于非阻塞式 I/O 的轮询方式,信号驱动 I/O 的 CPU 利用率更高。
应用进程执行 aio_read 系统调用会立即返回,应用进程可以继续执行,不会被阻塞,内核会在所有操作完成之后向应用进程发送信号。
异步 I/O 与信号驱动 I/O 的区别在于,异步 I/O 的信号是通知应用进程 I/O 完成,而信号驱动 I/O 的信号是通知应用进程可以开始 I/O。
- 同步 I/O:将数据从内核缓冲区复制到应用进程缓冲区的阶段(第二阶段),应用进程会阻塞。
- 异步 I/O:第二阶段应用进程不会阻塞。
同步 I/O 包括阻塞式 I/O、非阻塞式 I/O、I/O 复用和信号驱动 I/O ,它们的主要区别在第一个阶段。
非阻塞式 I/O 、信号驱动 I/O 和异步 I/O 在第一阶段不会阻塞。
select/poll/epoll 都是 I/O 多路复用的具体实现,select 出现的最早,之后是 poll,再是 epoll。
intselect(intn, fd_set*readfds, fd_set*writefds, fd_set*exceptfds, structtimeval*timeout);
select 允许应用程序监视一组文件描述符,等待一个或者多个描述符成为就绪状态,从而完成 I/O 操作。
fd_set 使用数组实现,数组大小使用 FD_SETSIZE 定义,所以只能监听少于 FD_SETSIZE 数量的描述符。有三种类型的描述符类型:readset、writeset、exceptset,分别对应读、写、异常条件的描述符集合。
timeout 为超时参数,调用 select 会一直阻塞直到有描述符的事件到达或者等待的时间超过 timeout。
成功调用返回结果大于 0,出错返回结果为 -1,超时返回结果为 0。
fd_setfd_in, fd_out; structtimevaltv; // Reset the setsFD_ZERO( &fd_in ); FD_ZERO( &fd_out ); // Monitor sock1 for input eventsFD_SET( sock1, &fd_in ); // Monitor sock2 for output eventsFD_SET( sock2, &fd_out ); // Find out which socket has the largest numeric value as select requires itintlargest_sock=sock1>sock2 ? sock1 : sock2; // Wait up to 10 secondstv.tv_sec=10; tv.tv_usec=0; // Call the selectintret=select( largest_sock+1, &fd_in, &fd_out, NULL, &tv ); // Check if select actually succeedif ( ret==-1 ) // report error and abortelseif ( ret==0 ) // timeout; no event detectedelse { if ( FD_ISSET( sock1, &fd_in ) ) // input event on sock1if ( FD_ISSET( sock2, &fd_out ) ) // output event on sock2 }
intpoll(structpollfd*fds, unsigned intnfds, inttimeout);
poll 的功能与 select 类似,也是等待一组描述符中的一个成为就绪状态。
poll 中的描述符是 pollfd 类型的数组,pollfd 的定义如下:
structpollfd { intfd; /* file descriptor */shortevents; /* requested events */shortrevents; /* returned events */ };
// The structure for two eventsstructpollfdfds[2]; // Monitor sock1 for inputfds[0].fd=sock1; fds[0].events=POLLIN; // Monitor sock2 for outputfds[1].fd=sock2; fds[1].events=POLLOUT; // Wait 10 secondsintret=poll( &fds, 2, 10000 ); // Check if poll actually succeedif ( ret==-1 ) // report error and abortelseif ( ret==0 ) // timeout; no event detectedelse { // If we detect the event, zero it out so we can reuse the structureif ( fds[0].revents&POLLIN ) fds[0].revents=0; // input event on sock1if ( fds[1].revents&POLLOUT ) fds[1].revents=0; // output event on sock2 }
select 和 poll 的功能基本相同,不过在一些实现细节上有所不同。
- select 会修改描述符,而 poll 不会;
- select 的描述符类型使用数组实现,FD_SETSIZE 大小默认为 1024,因此默认只能监听少于 1024 个描述符。如果要监听更多描述符的话,需要修改 FD_SETSIZE 之后重新编译;而 poll 没有描述符数量的限制;
- poll 提供了更多的事件类型,并且对描述符的重复利用上比 select 高。
- 如果一个线程对某个描述符调用了 select 或者 poll,另一个线程关闭了该描述符,会导致调用结果不确定。
select 和 poll 速度都比较慢,每次调用都需要将全部描述符从应用进程缓冲区复制到内核缓冲区。
几乎所有的系统都支持 select,但是只有比较新的系统支持 poll。
intepoll_create(intsize); intepoll_ctl(intepfd, intop, intfd, structepoll_event*event); intepoll_wait(intepfd, structepoll_event*events, intmaxevents, inttimeout);
epoll_ctl() 用于向内核注册新的描述符或者是改变某个文件描述符的状态。已注册的描述符在内核中会被维护在一棵红黑树上,通过回调函数内核会将 I/O 准备好的描述符加入到一个链表中管理,进程调用 epoll_wait() 便可以得到事件完成的描述符。
从上面的描述可以看出,epoll 只需要将描述符从进程缓冲区向内核缓冲区拷贝一次,并且进程不需要通过轮询来获得事件完成的描述符。
epoll 仅适用于 Linux OS。
epoll 比 select 和 poll 更加灵活而且没有描述符数量限制。
epoll 对多线程编程更有友好,一个线程调用了 epoll_wait() 另一个线程关闭了同一个描述符也不会产生像 select 和 poll 的不确定情况。
// Create the epoll descriptor. Only one is needed per app, and is used to monitor all sockets.// The function argument is ignored (it was not before, but now it is), so put your favorite number hereintpollingfd=epoll_create( 0xCAFE ); if ( pollingfd<0 ) // report error// Initialize the epoll structure in case more members are added in futurestructepoll_eventev= { 0 }; // Associate the connection class instance with the event. You can associate anything// you want, epoll does not use this information. We store a connection class pointer, pConnection1ev.data.ptr=pConnection1; // Monitor for input, and do not automatically rearm the descriptor after the eventev.events=EPOLLIN | EPOLLONESHOT; // Add the descriptor into the monitoring list. We can do it even if another thread is// waiting in epoll_wait - the descriptor will be properly addedif ( epoll_ctl( epollfd, EPOLL_CTL_ADD, pConnection1->getSocket(), &ev ) !=0 ) // report error// Wait for up to 20 events (assuming we have added maybe 200 sockets before that it may happen)structepoll_eventpevents[ 20 ]; // Wait for 10 seconds, and retrieve less than 20 epoll_event and store them into epoll_event arrayintready=epoll_wait( pollingfd, pevents, 20, 10000 ); // Check if epoll actually succeedif ( ret==-1 ) // report error and abortelseif ( ret==0 ) // timeout; no event detectedelse { // Check if any events detectedfor ( inti=0; i<ready; i++ ) { if ( pevents[i].events&EPOLLIN ) { // Get back our connection pointerConnection*c= (Connection*) pevents[i].data.ptr; c->handleReadEvent(); } } }
epoll 的描述符事件有两种触发模式:LT(level trigger)和 ET(edge trigger)。
当 epoll_wait() 检测到描述符事件到达时,将此事件通知进程,进程可以不立即处理该事件,下次调用 epoll_wait() 会再次通知进程。是默认的一种模式,并且同时支持 Blocking 和 No-Blocking。
和 LT 模式不同的是,通知之后进程必须立即处理事件,下次再调用 epoll_wait() 时不会再得到事件到达的通知。
很大程度上减少了 epoll 事件被重复触发的次数,因此效率要比 LT 模式高。只支持 No-Blocking,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。
很容易产生一种错觉认为只要用 epoll 就可以了,select 和 poll 都已经过时了,其实它们都有各自的使用场景。
select 的 timeout 参数精度为微秒,而 poll 和 epoll 为毫秒,因此 select 更加适用于实时性要求比较高的场景,比如核反应堆的控制。
select 可移植性更好,几乎被所有主流平台所支持。
poll 没有最大描述符数量的限制,如果平台支持并且对实时性要求不高,应该使用 poll 而不是 select。
只需要运行在 Linux 平台上,有大量的描述符需要同时轮询,并且这些连接最好是长连接。
需要同时监控小于 1000 个描述符,就没有必要使用 epoll,因为这个应用场景下并不能体现 epoll 的优势。
需要监控的描述符状态变化多,而且都是非常短暂的,也没有必要使用 epoll。因为 epoll 中的所有描述符都存储在内核中,造成每次需要对描述符的状态改变都需要通过 epoll_ctl() 进行系统调用,频繁系统调用降低效率。并且 epoll 的描述符存储在内核,不容易调试。
- Stevens W R, Fenner B, Rudoff A M. UNIX network programming[M]. Addison-Wesley Professional, 2004.
- http://man7.org/linux/man-pages/man2/select.2.html
- http://man7.org/linux/man-pages/man2/poll.2.html
- Boost application performance using asynchronous I/O
- Synchronous and Asynchronous I/O
- Linux IO 模式及 select、poll、epoll 详解
- poll vs select vs event-based
- select / poll / epoll: practical difference for system architects
- Browse the source code of userspace/glibc/sysdeps/unix/sysv/linux/ online