- Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathsample_diffusion.py
313 lines (259 loc) · 9.38 KB
/
sample_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
importargparse, os, sys, glob, datetime, yaml
importtorch
importtime
importnumpyasnp
fromtqdmimporttrange
fromomegaconfimportOmegaConf
fromPILimportImage
fromldm.models.diffusion.ddimimportDDIMSampler
fromldm.utilimportinstantiate_from_config
rescale=lambdax: (x+1.) /2.
defcustom_to_pil(x):
x=x.detach().cpu()
x=torch.clamp(x, -1., 1.)
x= (x+1.) /2.
x=x.permute(1, 2, 0).numpy()
x= (255*x).astype(np.uint8)
x=Image.fromarray(x)
ifnotx.mode=="RGB":
x=x.convert("RGB")
returnx
defcustom_to_np(x):
# saves the batch in adm style as in https://github.com/openai/guided-diffusion/blob/main/scripts/image_sample.py
sample=x.detach().cpu()
sample= ((sample+1) *127.5).clamp(0, 255).to(torch.uint8)
sample=sample.permute(0, 2, 3, 1)
sample=sample.contiguous()
returnsample
deflogs2pil(logs, keys=["sample"]):
imgs=dict()
forkinlogs:
try:
iflen(logs[k].shape) ==4:
img=custom_to_pil(logs[k][0, ...])
eliflen(logs[k].shape) ==3:
img=custom_to_pil(logs[k])
else:
print(f"Unknown format for key {k}. ")
img=None
except:
img=None
imgs[k] =img
returnimgs
@torch.no_grad()
defconvsample(model, shape, return_intermediates=True,
verbose=True,
make_prog_row=False):
ifnotmake_prog_row:
returnmodel.p_sample_loop(None, shape,
return_intermediates=return_intermediates, verbose=verbose)
else:
returnmodel.progressive_denoising(
None, shape, verbose=True
)
@torch.no_grad()
defconvsample_ddim(model, steps, shape, eta=1.0
):
ddim=DDIMSampler(model)
bs=shape[0]
shape=shape[1:]
samples, intermediates=ddim.sample(steps, batch_size=bs, shape=shape, eta=eta, verbose=False,)
returnsamples, intermediates
@torch.no_grad()
defmake_convolutional_sample(model, batch_size, vanilla=False, custom_steps=None, eta=1.0,):
log=dict()
shape= [batch_size,
model.model.diffusion_model.in_channels,
model.model.diffusion_model.image_size,
model.model.diffusion_model.image_size]
withmodel.ema_scope("Plotting"):
t0=time.time()
ifvanilla:
sample, progrow=convsample(model, shape,
make_prog_row=True)
else:
sample, intermediates=convsample_ddim(model, steps=custom_steps, shape=shape,
eta=eta)
t1=time.time()
x_sample=model.decode_first_stage(sample)
log["sample"] =x_sample
log["time"] =t1-t0
log['throughput'] =sample.shape[0] / (t1-t0)
print(f'Throughput for this batch: {log["throughput"]}')
returnlog
defrun(model, logdir, batch_size=50, vanilla=False, custom_steps=None, eta=None, n_samples=50000, nplog=None):
ifvanilla:
print(f'Using Vanilla DDPM sampling with {model.num_timesteps} sampling steps.')
else:
print(f'Using DDIM sampling with {custom_steps} sampling steps and eta={eta}')
tstart=time.time()
n_saved=len(glob.glob(os.path.join(logdir,'*.png')))-1
# path = logdir
ifmodel.cond_stage_modelisNone:
all_images= []
print(f"Running unconditional sampling for {n_samples} samples")
for_intrange(n_samples//batch_size, desc="Sampling Batches (unconditional)"):
logs=make_convolutional_sample(model, batch_size=batch_size,
vanilla=vanilla, custom_steps=custom_steps,
eta=eta)
n_saved=save_logs(logs, logdir, n_saved=n_saved, key="sample")
all_images.extend([custom_to_np(logs["sample"])])
ifn_saved>=n_samples:
print(f'Finish after generating {n_saved} samples')
break
all_img=np.concatenate(all_images, axis=0)
all_img=all_img[:n_samples]
shape_str="x".join([str(x) forxinall_img.shape])
nppath=os.path.join(nplog, f"{shape_str}-samples.npz")
np.savez(nppath, all_img)
else:
raiseNotImplementedError('Currently only sampling for unconditional models supported.')
print(f"sampling of {n_saved} images finished in {(time.time() -tstart) /60.:.2f} minutes.")
defsave_logs(logs, path, n_saved=0, key="sample", np_path=None):
forkinlogs:
ifk==key:
batch=logs[key]
ifnp_pathisNone:
forxinbatch:
img=custom_to_pil(x)
imgpath=os.path.join(path, f"{key}_{n_saved:06}.png")
img.save(imgpath)
n_saved+=1
else:
npbatch=custom_to_np(batch)
shape_str="x".join([str(x) forxinnpbatch.shape])
nppath=os.path.join(np_path, f"{n_saved}-{shape_str}-samples.npz")
np.savez(nppath, npbatch)
n_saved+=npbatch.shape[0]
returnn_saved
defget_parser():
parser=argparse.ArgumentParser()
parser.add_argument(
"-r",
"--resume",
type=str,
nargs="?",
help="load from logdir or checkpoint in logdir",
)
parser.add_argument(
"-n",
"--n_samples",
type=int,
nargs="?",
help="number of samples to draw",
default=50000
)
parser.add_argument(
"-e",
"--eta",
type=float,
nargs="?",
help="eta for ddim sampling (0.0 yields deterministic sampling)",
default=1.0
)
parser.add_argument(
"-v",
"--vanilla_sample",
default=False,
action='store_true',
help="vanilla sampling (default option is DDIM sampling)?",
)
parser.add_argument(
"-l",
"--logdir",
type=str,
nargs="?",
help="extra logdir",
default="none"
)
parser.add_argument(
"-c",
"--custom_steps",
type=int,
nargs="?",
help="number of steps for ddim and fastdpm sampling",
default=50
)
parser.add_argument(
"--batch_size",
type=int,
nargs="?",
help="the bs",
default=10
)
returnparser
defload_model_from_config(config, sd):
model=instantiate_from_config(config)
model.load_state_dict(sd,strict=False)
model.cuda()
model.eval()
returnmodel
defload_model(config, ckpt, gpu, eval_mode):
ifckpt:
print(f"Loading model from {ckpt}")
pl_sd=torch.load(ckpt, map_location="cpu")
global_step=pl_sd["global_step"]
else:
pl_sd= {"state_dict": None}
global_step=None
model=load_model_from_config(config.model,
pl_sd["state_dict"])
returnmodel, global_step
if__name__=="__main__":
now=datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
sys.path.append(os.getcwd())
command=" ".join(sys.argv)
parser=get_parser()
opt, unknown=parser.parse_known_args()
ckpt=None
ifnotos.path.exists(opt.resume):
raiseValueError("Cannot find {}".format(opt.resume))
ifos.path.isfile(opt.resume):
# paths = opt.resume.split("/")
try:
logdir='/'.join(opt.resume.split('/')[:-1])
# idx = len(paths)-paths[::-1].index("logs")+1
print(f'Logdir is {logdir}')
exceptValueError:
paths=opt.resume.split("/")
idx=-2# take a guess: path/to/logdir/checkpoints/model.ckpt
logdir="/".join(paths[:idx])
ckpt=opt.resume
else:
assertos.path.isdir(opt.resume), f"{opt.resume} is not a directory"
logdir=opt.resume.rstrip("/")
ckpt=os.path.join(logdir, "model.ckpt")
base_configs=sorted(glob.glob(os.path.join(logdir, "config.yaml")))
opt.base=base_configs
configs= [OmegaConf.load(cfg) forcfginopt.base]
cli=OmegaConf.from_dotlist(unknown)
config=OmegaConf.merge(*configs, cli)
gpu=True
eval_mode=True
ifopt.logdir!="none":
locallog=logdir.split(os.sep)[-1]
iflocallog=="": locallog=logdir.split(os.sep)[-2]
print(f"Switching logdir from '{logdir}' to '{os.path.join(opt.logdir, locallog)}'")
logdir=os.path.join(opt.logdir, locallog)
print(config)
model, global_step=load_model(config, ckpt, gpu, eval_mode)
print(f"global step: {global_step}")
print(75*"=")
print("logging to:")
logdir=os.path.join(logdir, "samples", f"{global_step:08}", now)
imglogdir=os.path.join(logdir, "img")
numpylogdir=os.path.join(logdir, "numpy")
os.makedirs(imglogdir)
os.makedirs(numpylogdir)
print(logdir)
print(75*"=")
# write config out
sampling_file=os.path.join(logdir, "sampling_config.yaml")
sampling_conf=vars(opt)
withopen(sampling_file, 'w') asf:
yaml.dump(sampling_conf, f, default_flow_style=False)
print(sampling_conf)
run(model, imglogdir, eta=opt.eta,
vanilla=opt.vanilla_sample, n_samples=opt.n_samples, custom_steps=opt.custom_steps,
batch_size=opt.batch_size, nplog=numpylogdir)
print("done.")