- Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathnotebook_helpers.py
270 lines (211 loc) · 9.86 KB
/
notebook_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
fromtorchvision.datasets.utilsimportdownload_url
fromldm.utilimportinstantiate_from_config
importtorch
importos
# todo ?
fromgoogle.colabimportfiles
fromIPython.displayimportImageasipyimg
importipywidgetsaswidgets
fromPILimportImage
fromnumpyimportasarray
fromeinopsimportrearrange, repeat
importtorch, torchvision
fromldm.models.diffusion.ddimimportDDIMSampler
fromldm.utilimportismap
importtime
fromomegaconfimportOmegaConf
defdownload_models(mode):
ifmode=="superresolution":
# this is the small bsr light model
url_conf='https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1'
url_ckpt='https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1'
path_conf='logs/diffusion/superresolution_bsr/configs/project.yaml'
path_ckpt='logs/diffusion/superresolution_bsr/checkpoints/last.ckpt'
download_url(url_conf, path_conf)
download_url(url_ckpt, path_ckpt)
path_conf=path_conf+'/?dl=1'# fix it
path_ckpt=path_ckpt+'/?dl=1'# fix it
returnpath_conf, path_ckpt
else:
raiseNotImplementedError
defload_model_from_config(config, ckpt):
print(f"Loading model from {ckpt}")
pl_sd=torch.load(ckpt, map_location="cpu")
global_step=pl_sd["global_step"]
sd=pl_sd["state_dict"]
model=instantiate_from_config(config.model)
m, u=model.load_state_dict(sd, strict=False)
model.cuda()
model.eval()
return {"model": model}, global_step
defget_model(mode):
path_conf, path_ckpt=download_models(mode)
config=OmegaConf.load(path_conf)
model, step=load_model_from_config(config, path_ckpt)
returnmodel
defget_custom_cond(mode):
dest="data/example_conditioning"
ifmode=="superresolution":
uploaded_img=files.upload()
filename=next(iter(uploaded_img))
name, filetype=filename.split(".") # todo assumes just one dot in name !
os.rename(f"{filename}", f"{dest}/{mode}/custom_{name}.{filetype}")
elifmode=="text_conditional":
w=widgets.Text(value='A cake with cream!', disabled=True)
display(w)
withopen(f"{dest}/{mode}/custom_{w.value[:20]}.txt", 'w') asf:
f.write(w.value)
elifmode=="class_conditional":
w=widgets.IntSlider(min=0, max=1000)
display(w)
withopen(f"{dest}/{mode}/custom.txt", 'w') asf:
f.write(w.value)
else:
raiseNotImplementedError(f"cond not implemented for mode{mode}")
defget_cond_options(mode):
path="data/example_conditioning"
path=os.path.join(path, mode)
onlyfiles= [fforfinsorted(os.listdir(path))]
returnpath, onlyfiles
defselect_cond_path(mode):
path="data/example_conditioning"# todo
path=os.path.join(path, mode)
onlyfiles= [fforfinsorted(os.listdir(path))]
selected=widgets.RadioButtons(
options=onlyfiles,
description='Select conditioning:',
disabled=False
)
display(selected)
selected_path=os.path.join(path, selected.value)
returnselected_path
defget_cond(mode, selected_path):
example=dict()
ifmode=="superresolution":
up_f=4
visualize_cond_img(selected_path)
c=Image.open(selected_path)
c=torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0)
c_up=torchvision.transforms.functional.resize(c, size=[up_f*c.shape[2], up_f*c.shape[3]], antialias=True)
c_up=rearrange(c_up, '1 c h w -> 1 h w c')
c=rearrange(c, '1 c h w -> 1 h w c')
c=2.*c-1.
c=c.to(torch.device("cuda"))
example["LR_image"] =c
example["image"] =c_up
returnexample
defvisualize_cond_img(path):
display(ipyimg(filename=path))
defrun(model, selected_path, task, custom_steps, resize_enabled=False, classifier_ckpt=None, global_step=None):
example=get_cond(task, selected_path)
save_intermediate_vid=False
n_runs=1
masked=False
guider=None
ckwargs=None
mode='ddim'
ddim_use_x0_pred=False
temperature=1.
eta=1.
make_progrow=True
custom_shape=None
height, width=example["image"].shape[1:3]
split_input=height>=128andwidth>=128
ifsplit_input:
ks=128
stride=64
vqf=4#
model.split_input_params= {"ks": (ks, ks), "stride": (stride, stride),
"vqf": vqf,
"patch_distributed_vq": True,
"tie_braker": False,
"clip_max_weight": 0.5,
"clip_min_weight": 0.01,
"clip_max_tie_weight": 0.5,
"clip_min_tie_weight": 0.01}
else:
ifhasattr(model, "split_input_params"):
delattr(model, "split_input_params")
invert_mask=False
x_T=None
forninrange(n_runs):
ifcustom_shapeisnotNone:
x_T=torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device)
x_T=repeat(x_T, '1 c h w -> b c h w', b=custom_shape[0])
logs=make_convolutional_sample(example, model,
mode=mode, custom_steps=custom_steps,
eta=eta, swap_mode=False , masked=masked,
invert_mask=invert_mask, quantize_x0=False,
custom_schedule=None, decode_interval=10,
resize_enabled=resize_enabled, custom_shape=custom_shape,
temperature=temperature, noise_dropout=0.,
corrector=guider, corrector_kwargs=ckwargs, x_T=x_T, save_intermediate_vid=save_intermediate_vid,
make_progrow=make_progrow,ddim_use_x0_pred=ddim_use_x0_pred
)
returnlogs
@torch.no_grad()
defconvsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None,
mask=None, x0=None, quantize_x0=False, img_callback=None,
temperature=1., noise_dropout=0., score_corrector=None,
corrector_kwargs=None, x_T=None, log_every_t=None
):
ddim=DDIMSampler(model)
bs=shape[0] # dont know where this comes from but wayne
shape=shape[1:] # cut batch dim
print(f"Sampling with eta = {eta}; steps: {steps}")
samples, intermediates=ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback,
normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta,
mask=mask, x0=x0, temperature=temperature, verbose=False,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs, x_T=x_T)
returnsamples, intermediates
@torch.no_grad()
defmake_convolutional_sample(batch, model, mode="vanilla", custom_steps=None, eta=1.0, swap_mode=False, masked=False,
invert_mask=True, quantize_x0=False, custom_schedule=None, decode_interval=1000,
resize_enabled=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None,
corrector_kwargs=None, x_T=None, save_intermediate_vid=False, make_progrow=True,ddim_use_x0_pred=False):
log=dict()
z, c, x, xrec, xc=model.get_input(batch, model.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=not (hasattr(model, 'split_input_params')
andmodel.cond_stage_key=='coordinates_bbox'),
return_original_cond=True)
log_every_t=1ifsave_intermediate_videlseNone
ifcustom_shapeisnotNone:
z=torch.randn(custom_shape)
print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}")
z0=None
log["input"] =x
log["reconstruction"] =xrec
ifismap(xc):
log["original_conditioning"] =model.to_rgb(xc)
ifhasattr(model, 'cond_stage_key'):
log[model.cond_stage_key] =model.to_rgb(xc)
else:
log["original_conditioning"] =xcifxcisnotNoneelsetorch.zeros_like(x)
ifmodel.cond_stage_model:
log[model.cond_stage_key] =xcifxcisnotNoneelsetorch.zeros_like(x)
ifmodel.cond_stage_key=='class_label':
log[model.cond_stage_key] =xc[model.cond_stage_key]
withmodel.ema_scope("Plotting"):
t0=time.time()
img_cb=None
sample, intermediates=convsample_ddim(model, c, steps=custom_steps, shape=z.shape,
eta=eta,
quantize_x0=quantize_x0, img_callback=img_cb, mask=None, x0=z0,
temperature=temperature, noise_dropout=noise_dropout,
score_corrector=corrector, corrector_kwargs=corrector_kwargs,
x_T=x_T, log_every_t=log_every_t)
t1=time.time()
ifddim_use_x0_pred:
sample=intermediates['pred_x0'][-1]
x_sample=model.decode_first_stage(sample)
try:
x_sample_noquant=model.decode_first_stage(sample, force_not_quantize=True)
log["sample_noquant"] =x_sample_noquant
log["sample_diff"] =torch.abs(x_sample_noquant-x_sample)
except:
pass
log["sample"] =x_sample
log["time"] =t1-t0
returnlog