- Notifications
You must be signed in to change notification settings - Fork 3k
/
Copy pathsample_embeddings.py
57 lines (45 loc) · 2.15 KB
/
sample_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""
DESCRIPTION:
This sample demonstrates how to get text embeddings for a list of sentences
using a synchronous client. Here we use the service default of returning
embeddings as a list of floating point values.
This sample assumes the AI model is hosted on a Serverless API or
Managed Compute endpoint. For GitHub Models or Azure OpenAI endpoints,
the client constructor needs to be modified. See package documentation:
https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-inference/README.md#key-concepts
USAGE:
python sample_embeddings.py
Set these two environment variables before running the sample:
1) AZURE_AI_EMBEDDINGS_ENDPOINT - Your endpoint URL, in the form
https://<your-deployment-name>.<your-azure-region>.models.ai.azure.com
where `your-deployment-name` is your unique AI Model deployment name, and
`your-azure-region` is the Azure region where your model is deployed.
2) AZURE_AI_EMBEDDINGS_KEY - Your model key. Keep it secret.
"""
defsample_embeddings():
importos
try:
endpoint=os.environ["AZURE_AI_EMBEDDINGS_ENDPOINT"]
key=os.environ["AZURE_AI_EMBEDDINGS_KEY"]
exceptKeyError:
print("Missing environment variable 'AZURE_AI_EMBEDDINGS_ENDPOINT' or 'AZURE_AI_EMBEDDINGS_KEY'")
print("Set them before running this sample.")
exit()
# [START embeddings]
fromazure.ai.inferenceimportEmbeddingsClient
fromazure.core.credentialsimportAzureKeyCredential
client=EmbeddingsClient(endpoint=endpoint, credential=AzureKeyCredential(key))
response=client.embed(input=["first phrase", "second phrase", "third phrase"])
foriteminresponse.data:
length=len(item.embedding)
print(
f"data[{item.index}]: length={length}, [{item.embedding[0]}, {item.embedding[1]}, "
f"..., {item.embedding[length-2]}, {item.embedding[length-1]}]"
)
# [END embeddings]
if__name__=="__main__":
sample_embeddings()