- Notifications
You must be signed in to change notification settings - Fork 3k
/
Copy pathsample_chat_completions_streaming.py
64 lines (51 loc) · 2.33 KB
/
sample_chat_completions_streaming.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""
DESCRIPTION:
This sample demonstrates how to get a chat completion streaming response
from the service using a synchronous client.
This sample assumes the AI model is hosted on a Serverless API or
Managed Compute endpoint. For GitHub Models or Azure OpenAI endpoints,
the client constructor needs to be modified. See package documentation:
https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/ai/azure-ai-inference/README.md#key-concepts
USAGE:
python sample_chat_completions_streaming.py
Set these two environment variables before running the sample:
1) AZURE_AI_CHAT_ENDPOINT - Your endpoint URL, in the form
https://<your-deployment-name>.<your-azure-region>.models.ai.azure.com
where `your-deployment-name` is your unique AI Model deployment name, and
`your-azure-region` is the Azure region where your model is deployed.
2) AZURE_AI_CHAT_KEY - Your model key. Keep it secret.
"""
defsample_chat_completions_streaming():
importos
try:
endpoint=os.environ["AZURE_AI_CHAT_ENDPOINT"]
key=os.environ["AZURE_AI_CHAT_KEY"]
exceptKeyError:
print("Missing environment variable 'AZURE_AI_CHAT_ENDPOINT' or 'AZURE_AI_CHAT_KEY'")
print("Set them before running this sample.")
exit()
# [START chat_completions_streaming]
fromazure.ai.inferenceimportChatCompletionsClient
fromazure.ai.inference.modelsimportSystemMessage, UserMessage
fromazure.core.credentialsimportAzureKeyCredential
client=ChatCompletionsClient(endpoint=endpoint, credential=AzureKeyCredential(key))
response=client.complete(
stream=True,
messages=[
SystemMessage("You are a helpful assistant."),
UserMessage("Give me 5 good reasons why I should exercise every day."),
],
)
forupdateinresponse:
ifupdate.choicesandupdate.choices[0].delta:
print(update.choices[0].delta.contentor"", end="", flush=True)
ifupdate.usage:
print(f"\n\nToken usage: {update.usage}")
client.close()
# [END chat_completions_streaming]
if__name__=="__main__":
sample_chat_completions_streaming()