- Notifications
You must be signed in to change notification settings - Fork 251
/
Copy pathAnFany_SVM_Regression.py
459 lines (375 loc) · 16 KB
/
AnFany_SVM_Regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
# -*- coding:utf-8 -*-
# &Author AnFany
# SMO算法实现支持向量机回归
"""
第一部分:引入库
"""
importnumpyasnp
importmatplotlib.pyplotasplt
frompylabimportmpl
mpl.rcParams['font.sans-serif'] = ['FangSong'] # 中文字体名称
mpl.rcParams['axes.unicode_minus'] =False# 显示负号
# 引入数据
importSVM_Regression_Dataasrdata
"""
第二部分:构建核函数以及SVM的结构
"""
# 构建核函数
classKERNEL:
"""
linear:线性 rbf:高斯 sigmoid:Sigmoid型 poly:多项式
核函数:注意输入数据的shape以及输出数据的shape。
xVSy包括3种情况:单样本VS单样本 单样本VS多样本 多样本VS多样本
"""
def__init__(self, polyd=3, rbfsigma=0.2, tanhbeta=0.6, tanhtheta=-0.6):
self.polyd=polyd
self.rbfsigma=rbfsigma
self.tanhbeta=tanhbeta
self.tanhtheta=tanhtheta
deftrans(self, x):
x=np.array(x)
ifx.ndim==1:
x=np.array([x])
returnx
# 线性核函数
deflinear(self, x, y): # 输出的结果shape=(len(y), len(x))
x, y=self.trans(x), self.trans(y)
iflen(x) ==1:
return (x*y).sum(axis=1, keepdims=True)
else:
sx=x.reshape(x.shape[0], -1, x.shape[1])
return (sx*y).sum(axis=2).T
# Singmoid型核函数
defsigmoid(self, x, y): # 输出的结果shape=(len(y), len(x))
x, y=self.trans(x), self.trans(y)
iflen(x) ==1:
returnnp.tanh(self.tanhbeta* ((x*y).sum(axis=1, keepdims=True)) +self.tanhtheta)
else:
sx=x.reshape(x.shape[0], -1, x.shape[1])
returnnp.tanh(self.tanhbeta* (sx*y).sum(axis=2).T+self.tanhtheta)
# 多项式核函数
defpoly(self, x, y): # 输出的结果shape=(len(y), len(x))
x, y=self.trans(x), self.trans(y)
iflen(x) ==1:
return (x*y).sum(axis=1, keepdims=True) **self.polyd
else:
sx=x.reshape(x.shape[0], -1, x.shape[1])
return (sx*y).sum(axis=2).T**self.polyd
# 高斯核函数
defrbf(self, x, y): # 输出的结果shape=(len(y), len(x))
x, y=self.trans(x), self.trans(y)
iflen(x) ==1andlen(y) ==1:
returnnp.exp(self.linear((x-y), (x-y)) / (-2*self.rbfsigma**2))
eliflen(x) ==1andlen(y) !=1:
returnnp.exp((np.power(x-y, 2)).sum(axis=1, keepdims=True) / (-2*self.rbfsigma**2))
else:
sx=x.reshape(x.shape[0], -1, x.shape[1])
returnnp.exp((np.power(sx-y, 2)).sum(axis=2).T/ (-2*self.rbfsigma**2))
# 构建SVM的结构
classSVR:
def__init__(self, feature, labels, kernel='rbf', C=0.8, toler=0.001, epsilon=0.001, times=100, eps=0.0001):
# 训练样本的属性数据、标签数据
self.feature=feature
self.labels=labels
# SMO算法变量
self.C=C
self.toler=toler
self.alphas=np.zeros(len(self.feature))
self.alphas_star=np.zeros(len(self.feature))
self.b=0
self.eps=eps# 选择拉格朗日因子
self.epsilon=epsilon
# 核函数
self.kernel=eval('KERNEL().'+kernel)
# 拉格朗日误差序列
self.errors= [self.get_error(i) foriinrange(len(self.feature))]
# 循环的最大次数
self.times=times
# 计算分割线的值,x为单样本
defline_num(self, x):
ks=self.kernel(x, self.feature)
wx=np.matrix(self.alphas-self.alphas_star) *ks
num=np.array(wx+self.b)
returnnum[0][0]
# 获得编号为i的样本对应的误差
defget_error(self, i):
x, y=self.feature[i], self.labels[i]
error=self.line_num(x) -y
returnerror
# 更改拉格朗日因子后,更新所有样本对应的误差
defupdate_errors(self):
self.errors= [self.get_error(i) foriinrange(len(self.feature))]
# 预测函数
defpredictall(self, prefeat):
ks=self.kernel(prefeat, self.feature)
wx=np.matrix(self.alphas-self.alphas_star) *ks
num=np.array(wx+self.b)
returnnum[0]
"""
第三部分:构建SMO算法需要的函数
"""
deftakestep(svr, i1, i2):
ifi1==i2:
return0
alpha1, alphas1=svr.alphas[i1], svr.alphas_star[i1]
alpha2, alphas2=svr.alphas[i2], svr.alphas_star[i2]
phi1, phi2=svr.errors[i1], svr.errors[i2]
x1, x2=svr.feature[i1], svr.feature[i2]
y1, y2=svr.labels[i1], svr.labels[i2]
k11, k12, k22=svr.kernel(x1, x1)[0][0], svr.kernel(x1, x2)[0][0], svr.kernel(x2, x2)[0][0]
eta=2*k12-k11-k22
gamma=alpha1-alphas1+alpha2-alphas2
case1=case2=case3=case4=finished=0
a1old, a1olds=alpha1, alphas1
delta_phi=phi1-phi2
whilenotfinished:
if (case1==0) and (alpha1>0or (alphas1==0anddelta_phi>0)) \
and (alpha2>0or (alphas2==0anddelta_phi<0)):
# 计算L和H (a1, a2)
L=max(0, gamma-svr.C)
H=min(svr.C, gamma)
ifL<H:
ifeta>0:
a2=alpha2-delta_phi/eta
a2=min(a2, H)
a2=max(L, a2)
a1=alpha1-a2+alpha2
else:
a2=L
a1=alpha1- (a2-alpha2)
object1=-0.5*a1*a1*eta+a1* (delta_phi+ (a1old-a1olds) *eta)
a2=H
a1=alpha1- (a2-alpha2)
object2=-0.5*a1*a1*eta+a1* (delta_phi+ (a1old-a1olds) *eta)
ifobject1>object2:
a2=L
else:
a2=H
a1=alpha1- (a2-alpha2)
ifabs(delta_phi-eta* (a1-alpha1)) >svr.epsilon:
svr.alphas[i1] =a1
svr.alphas[i2] =a2
else:
finished=1
case1=1
elif (case2==0) and (alpha1>0or (alphas1==0anddelta_phi>2*svr.epsilon)) \
and (alphas2>0or (alpha2==0anddelta_phi>2*svr.epsilon)):
# 计算L和H (a1, a2*)
L=max(0, gamma)
H=min(svr.C, svr.C+gamma)
ifL<H:
ifeta>0:
a2=alphas2+ (delta_phi-2*svr.epsilon) /eta
a2=min(a2, H)
a2=max(L, a2)
a1=alpha1+a2-alphas2
else:
a2=L
a1=alpha1+ (a2-alphas2)
object1=-0.5*a1*a1*eta-2*svr.epsilon*a1+a1* (delta_phi+ (a1old-a1olds) *eta)
a2=H
a1=alpha1+ (a2-alpha2)
object2=-0.5*a1*a1*eta-2*svr.epsilon*a1+a1* (delta_phi+ (a1old-a1olds) *eta)
ifobject1>object2:
a2=L
else:
a2=H
a1=alpha1+ (a2-alphas2)
# 判断变化大小
ifabs(delta_phi-eta* (a1-alpha1)) >svr.epsilon:
svr.alphas[i1] =a1
svr.alphas_star[i2] =a2
else:
finished=1
case2=1
elif (case3==0) and (alphas1>0or (alpha1==0anddelta_phi<2*svr.epsilon)) \
and (alpha2>0or (alphas2==0anddelta_phi<2*svr.epsilon)):
# 计算L和H (a1*, a2)
L=max(0, -gamma)
H=min(svr.C, svr.C-gamma)
ifL<H:
ifeta>0:
a2=alpha2- (delta_phi-2*svr.epsilon) /eta
a2=min(a2, H)
a2=max(L, a2)
a1=alphas1+a2-alpha2
else:
a2=L
a1=alphas1+ (a2-alpha2)
object1=-0.5*a1*a1*eta-2*svr.epsilon*a1-a1* (delta_phi+ (a1old-a1olds) *eta)
a2=H
a1=alphas1+ (a2-alpha2)
object2=-0.5*a1*a1*eta-2*svr.epsilon*a1-a1* (delta_phi+ (a1old-a1olds) *eta)
ifobject1>object2:
a2=L
else:
a2=H
a1=alphas1+ (a2-alpha2)
# 判断变化大小
ifabs((delta_phi-eta* (-a1+alphas1))) >svr.epsilon:
svr.alphas_star[i1] =a1
svr.alphas[i2] =a2
else:
finished=1
case3=1
elif (case4==0) and (alphas1>0or (alpha1==0anddelta_phi<0)) \
and (alphas2>0or (alpha2==0anddelta_phi>0)):
# 计算L和H (a1*, a2*)
L=max(0, -gamma-svr.C)
H=min(svr.C, -gamma)
ifL<H:
ifeta>0:
a2=alphas2+delta_phi/eta
a2=min(a2, H)
a2=max(L, a2)
a1=alphas1-a2+alphas2
else:
a2=L
a1=alphas1- (a2-alphas2)
object1=-0.5*a1*a1*eta-a1* (delta_phi+ (a1old-a1olds) *eta)
a2=H
a1=alphas1- (a2-alphas2)
object2=-0.5*a1*a1*eta-a1* (delta_phi+ (a1old-a1olds) *eta)
ifobject1>object2:
a2=L
else:
a2=H
a1=alphas1- (a2-alphas2)
# 判断变化大小
ifabs((delta_phi-eta* (-a1+alphas1))) >svr.epsilon:
svr.alphas_star[i1] =a1
svr.alphas_star[i2] =a2
else:
finished=1
case4=1
else:
finished=1
delta_phi=delta_phi-eta* ((alpha1-alphas1) - (a1old-a1olds))
# 更新b值
b1, b2=0, 0
foriiinrange(len(svr.feature)):
b1+= (svr.alphas[ii] -svr.alphas_star[ii]) *svr.kernel(svr.feature[ii], x1)[0][0]
b2+= (svr.alphas[ii] -svr.alphas_star[ii]) *svr.kernel(svr.feature[ii], x2)[0][0]
b1=y1-b1
b2=y2-b2
b12= (b1+b2) /2
svr.b=b12
# 更新误差
svr.update_errors()
ifabs(delta_phi) >svr.epsilon:
return1
else:
return0
defexamineExample(svr, i2):
alpha2=svr.alphas[i2]
alphas2=svr.alphas_star[i2]
phi2=svr.errors[i2]
if (phi2>svr.epsilonandalphas2<svr.C) or (phi2<svr.epsilonandalphas2>0) \
or(-phi2>svr.epsilonandalpha2<svr.C) or (-phi2>svr.epsilonandalpha2>0):
manzu= [ioforioinrange(len(svr.feature)) ifsvr.alphas[io] !=0andsvr.alphas[io] !=svr.C]
iflen(manzu) >1:
delta_phi=0
i1=0
forhiinrange(len(svr.feature)):
# 选择最大的启发式选择
yphi=svr.errors[hi]
ifabs(yphi-phi2) >delta_phi:
delta_phi=abs(yphi-phi2)
i1=hi
iftakestep(svr, i1, i2):
return1
# 随机边界样本选择
forjjinrange(len(svr.feature)):
i1=np.random.choice(np.arange(len(svr.feature)), 1)[0]
ifsvr.alphas[i1] !=0andsvr.alphas[i1] !=svr.C:
iftakestep(svr, i1, i2):
return1
# 随机全部样本选择
forjjinrange(len(svr.feature)):
i1=np.random.choice(np.arange(len(svr.feature)), 1)[0]
iftakestep(svr, i1, i2):
return1
return0
# 主要函数
defmainfun(svr):
numChanged=0
examineAll=1
SigFig=-100
Loopcounter=0
while ((numChanged>0orexamineAll) orSigFig<3) andLoopcounter<10000:
Loopcounter+=1
numChanged=0
ifexamineAll:
print('全部样本')
foriginrange(len(svr.feature)):
numChanged+=examineExample(svr, ig)
else:
print('边界样本')
manzu= [ipoforipoinrange(len(svr.feature)) ifsvr.alphas[ipo] !=0andsvr.alphas[ipo] !=svr.C]
forgiinmanzu:
numChanged+=examineExample(svr, gi)
ifLoopcounter%2==0:
MinimumNumChanged=max(1, 0.1*len(svr.alphas))
else:
MinimumNumChanged=1
ifexamineAll==1:
examineAll=0
else:
ifnumChanged<MinimumNumChanged:
examineAll=1
dobject=0
pobject=0
forghiinrange(len(svr.feature)):
p1=svr.feature[ghi]
dobject+=max(0, svr.line_num(p1) -svr.labels[ghi] -svr.epsilon) * (svr.C-svr.alphas_star[ghi])
dobject-=min(0, svr.line_num(p1) -svr.labels[ghi] -svr.epsilon) *svr.alphas_star[ghi]
dobject+=min(0, svr.labels[ghi] -svr.epsilon-svr.line_num(p1)) * (svr.C-svr.alphas[ghi])
dobject-=max(0, svr.labels[ghi] -svr.epsilon-svr.line_num(p1)) *svr.alphas[ghi]
p1=svr.feature[ghi]
pobject+= (0.5* (svr.alphas[ghi] -svr.alphas_star[ghi]) * (svr.line_num(p1) -svr.b))
pobject-= (svr.epsilon* (svr.alphas[ghi] +svr.alphas_star[ghi]))
pobject+= (svr.labels[ghi] * (svr.alphas[ghi] -svr.alphas_star[ghi]))
print('gggggggggggggggggggggggggggggggggggg', pobject, dobject)
pobject+=dobject
SigFig=np.log10(dobject/ (abs(pobject) +1))
print('SigFig = %.9f'%SigFig)
print('结束训练')
returnsvr.alphas, svr.alphas_star, svr.b
# 返回训练数据、预测数据的输出值
defpl(trfe, trla, prfe, maxnum, minnum):
# 建立结构
svre=SVR(feature=trfe, labels=trla)
mainfun(svre)
traiout=svre.predictall(trfe)
preout=svre.predictall(prfe)
# 首先是数据转化范围
traiout=traiout* (maxnum-minnum) +minnum
preout=preout* (maxnum-minnum) +minnum
returntraiout, preout
# 绘图的函数
defhuitu(suout, shiout, c=['b', 'k'], sign='训练', cudu=3):
print(suout)
print(shiout)
# 绘制原始数据和预测数据的对比
plt.subplot(2, 1, 1)
plt.plot(list(range(len(suout))), suout, c=c[0], linewidth=cudu, label='%s:算法输出'%sign)
plt.plot(list(range(len(shiout))), shiout, c=c[1], linewidth=cudu, label='%s:实际值'%sign)
plt.legend()
plt.title('对比')
# 绘制误差和0的对比图
plt.subplot(2, 1, 2)
plt.plot(list(range(len(suout))), suout-shiout, c='r', linewidth=cudu, label='%s:误差'%sign)
plt.plot(list(range(len(suout))), list(np.zeros(len(suout))), c='r', linewidth=cudu, label='0值')
plt.legend()
plt.title('误差')
# 需要添加一个误差的分布图
# 显示
plt.show()
'''第四部分:最终的运行程序'''
if__name__=="__main__":
datasvr=rdata.model_data
outtri, poupre=pl(datasvr[0], datasvr[1].T[0], datasvr[2], datasvr[4][0], datasvr[4][1])
trii=datasvr[1].T[0] * (datasvr[4][0] -datasvr[4][1]) +datasvr[4][1]
huitu(outtri, trii, c=['b', 'k'], sign='训练', cudu=3)
prii=datasvr[3].T[0] * (datasvr[4][0] -datasvr[4][1]) +datasvr[4][1]
huitu(poupre, prii, c=['b', 'k'], sign='预测', cudu=3)