Source: llm/llama-3

Llama 3: Open LLM from Meta#

Llama-3 x SkyPilot

Llama-3 is the latest top open-source LLM from Meta. It has been released with a license that authorizes commercial use. You can deploy a private Llama-3 chatbot with SkyPilot in your own cloud with just one simple command.

Why use SkyPilot vs. commercial hosted solutions?#

  • No lock-in: run on any supported cloud - AWS, Azure, GCP, Lambda Cloud, IBM, Samsung, OCI

  • Everything stays in your cloud account (your VMs & buckets)

  • No one else sees your chat history

  • Pay absolute minimum — no managed solution markups

  • Freely choose your own model size, GPU type, number of GPUs, etc, based on scale and budget.

…and you get all of this with 1 click — let SkyPilot automate the infra.

Prerequisites#

  • Go to the HuggingFace model page and request access to the model meta-llama/Meta-Llama-3-70B-Instruct.

  • Check that you have installed SkyPilot (docs).

  • Check that skycheck shows clouds or Kubernetes are enabled.

SkyPilot YAML#

Click to see the full recipe YAML
envs:MODEL_NAME:meta-llama/Meta-Llama-3-70B-Instruct# MODEL_NAME: meta-llama/Meta-Llama-3-8B-InstructHF_TOKEN:# TODO: Fill with your own huggingface token, or use --env to pass.service:replicas:2# An actual request for readiness probe.readiness_probe:path:/v1/chat/completionspost_data:model:$MODEL_NAMEmessages:-role:usercontent:Hello! What is your name?max_tokens:1resources:accelerators:{L4:8,A10g:8,A10:8,A100:4,A100:8,A100-80GB:2,A100-80GB:4,A100-80GB:8}# accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # We can use cheaper accelerators for 8B model.cpus:32+use_spot:Truedisk_size:512# Ensure model checkpoints can fit.disk_tier:bestports:8081# Expose to internet traffic.setup:|conda activate vllmif [ $? -ne 0 ]; thenconda create -n vllm python=3.10 -yconda activate vllmfipip install vllm==0.4.2# Install Gradio for web UI.pip install gradio openaipip install flash-attn==2.5.9.post1run:|conda activate vllmecho 'Starting vllm api server...'# https://github.com/vllm-project/vllm/issues/3098export PATH=$PATH:/sbin# NOTE: --gpu-memory-utilization 0.95 needed for 4-GPU nodes.python -u -m vllm.entrypoints.openai.api_server \--port 8081 \--model $MODEL_NAME \--trust-remote-code --tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \--gpu-memory-utilization 0.95 \--max-num-seqs 64 \2>&1 | tee api_server.log &while ! `cat api_server.log | grep -q 'Uvicorn running on'`; doecho 'Waiting for vllm api server to start...'sleep 5doneecho 'Starting gradio server...'git clone https://github.com/vllm-project/vllm.git || truepython vllm/examples/gradio_openai_chatbot_webserver.py \-m $MODEL_NAME \--port 8811 \--model-url http://localhost:8081/v1 \--stop-token-ids 128009,128001

You can also get the full YAML file here.

Serving Llama-3: single instance#

Launch a single spot instance to serve Llama-3 on your infra:

HF_TOKEN=xxx sky launch llama3.yaml -c llama3 --env HF_TOKEN
Example outputs:
...I 04-18 16:31:30 optimizer.py:693] == Optimizer ==I 04-18 16:31:30 optimizer.py:704] Target: minimizing costI 04-18 16:31:30 optimizer.py:716] Estimated cost: $1.2 / hourI 04-18 16:31:30 optimizer.py:716]I 04-18 16:31:30 optimizer.py:839] Considered resources (1 node):I 04-18 16:31:30 optimizer.py:909] -----------------------------------------------------------------------------------------------------------------I 04-18 16:31:30 optimizer.py:909] CLOUD INSTANCE vCPUs Mem(GB) ACCELERATORS REGION/ZONE COST ($) CHOSENI 04-18 16:31:30 optimizer.py:909] -----------------------------------------------------------------------------------------------------------------I 04-18 16:31:30 optimizer.py:909] Azure Standard_NC48ads_A100_v4[Spot] 48 440 A100-80GB:2 eastus 1.22 ✔I 04-18 16:31:30 optimizer.py:909] AWS g6.48xlarge[Spot] 192 768 L4:8 us-east-1b 1.43I 04-18 16:31:30 optimizer.py:909] Azure Standard_NC96ads_A100_v4[Spot] 96 880 A100-80GB:4 eastus 2.44I 04-18 16:31:30 optimizer.py:909] AWS g5.48xlarge[Spot] 192 768 A10G:8 us-east-2b 2.45I 04-18 16:31:30 optimizer.py:909] GCP g2-standard-96[Spot] 96 384 L4:8 asia-east1-a 2.49I 04-18 16:31:30 optimizer.py:909] Azure Standard_ND96asr_v4[Spot] 96 900 A100:8 eastus 4.82I 04-18 16:31:30 optimizer.py:909] GCP a2-highgpu-4g[Spot] 48 340 A100:4 europe-west4-a 4.82I 04-18 16:31:30 optimizer.py:909] AWS p4d.24xlarge[Spot] 96 1152 A100:8 us-east-2b 4.90I 04-18 16:31:30 optimizer.py:909] Azure Standard_ND96amsr_A100_v4[Spot] 96 1924 A100-80GB:8 southcentralus 5.17I 04-18 16:31:30 optimizer.py:909] GCP a2-ultragpu-4g[Spot] 48 680 A100-80GB:4 us-east4-c 7.39I 04-18 16:31:30 optimizer.py:909] GCP a2-highgpu-8g[Spot] 96 680 A100:8 europe-west4-a 9.65I 04-18 16:31:30 optimizer.py:909] GCP a2-ultragpu-8g[Spot] 96 1360 A100-80GB:8 us-east4-c 14.79I 04-18 16:31:30 optimizer.py:909] -----------------------------------------------------------------------------------------------------------------I 04-18 16:31:30 optimizer.py:909]...

To run on Kubernetes or use an on-demand instance, pass --no-use-spot to the above command.

Example outputs with Kubernetes / on-demand instances:
$ HF_TOKEN=xxxskylaunchllama3.yaml-cllama3--envHF_TOKEN--no-use-spot ...I 04-18 16:34:13 optimizer.py:693] == Optimizer ==I 04-18 16:34:13 optimizer.py:704] Target: minimizing costI 04-18 16:34:13 optimizer.py:716] Estimated cost: $5.0 / hourI 04-18 16:34:13 optimizer.py:716]I 04-18 16:34:13 optimizer.py:839] Considered resources (1 node):I 04-18 16:34:13 optimizer.py:909] ------------------------------------------------------------------------------------------------------------------I 04-18 16:34:13 optimizer.py:909] CLOUD INSTANCE vCPUs Mem(GB) ACCELERATORS REGION/ZONE COST ($) CHOSENI 04-18 16:34:13 optimizer.py:909] ------------------------------------------------------------------------------------------------------------------I 04-18 16:34:13 optimizer.py:909] Kubernetes 32CPU--512GB--8A100 32 512 A100:8 kubernetes 0.00 ✔I 04-18 16:34:13 optimizer.py:909] Fluidstack recE2ZDQmqR9HBKYs5xSnjtPw 64 240 A100-80GB:2 generic_1_canada 4.96I 04-18 16:34:13 optimizer.py:909] Fluidstack recUiB2e6s3XDxwE9 60 440 A100:4 calgary_1_canada 5.88I 04-18 16:34:13 optimizer.py:909] Azure Standard_NC48ads_A100_v4 48 440 A100-80GB:2 eastus 7.35I 04-18 16:34:13 optimizer.py:909] GCP g2-standard-96 96 384 L4:8 us-east4-a 7.98I 04-18 16:34:13 optimizer.py:909] Fluidstack recWGm4oJ9AB3XVPxzRaujgbx 126 480 A100-80GB:4 generic_1_canada 9.89I 04-18 16:34:13 optimizer.py:909] Paperspace A100-80Gx4 46 320 A100-80GB:4 East Coast (NY2) 12.72I 04-18 16:34:13 optimizer.py:909] AWS g6.48xlarge 192 768 L4:8 us-east-1 13.35I 04-18 16:34:13 optimizer.py:909] GCP a2-highgpu-4g 48 340 A100:4 us-central1-a 14.69I 04-18 16:34:13 optimizer.py:909] Azure Standard_NC96ads_A100_v4 96 880 A100-80GB:4 eastus 14.69I 04-18 16:34:13 optimizer.py:909] AWS g5.48xlarge 192 768 A10G:8 us-east-1 16.29I 04-18 16:34:13 optimizer.py:909] Fluidstack recUYj6oGJCvAvCXC7KQo5Fc7 252 960 A100-80GB:8 generic_1_canada 19.79I 04-18 16:34:13 optimizer.py:909] GCP a2-ultragpu-4g 48 680 A100-80GB:4 us-central1-a 20.11I 04-18 16:34:13 optimizer.py:909] Paperspace A100-80Gx8 96 640 A100-80GB:8 East Coast (NY2) 25.44I 04-18 16:34:13 optimizer.py:909] Azure Standard_ND96asr_v4 96 900 A100:8 eastus 27.20I 04-18 16:34:13 optimizer.py:909] GCP a2-highgpu-8g 96 680 A100:8 us-central1-a 29.39I 04-18 16:34:13 optimizer.py:909] Azure Standard_ND96amsr_A100_v4 96 1924 A100-80GB:8 eastus 32.77I 04-18 16:34:13 optimizer.py:909] AWS p4d.24xlarge 96 1152 A100:8 us-east-1 32.77I 04-18 16:34:13 optimizer.py:909] GCP a2-ultragpu-8g 96 1360 A100-80GB:8 us-central1-a 40.22I 04-18 16:34:13 optimizer.py:909] AWS p4de.24xlarge 96 1152 A100-80GB:8 us-east-1 40.97I 04-18 16:34:13 optimizer.py:909] ------------------------------------------------------------------------------------------------------------------...

Wait until the model is ready (this can take 10+ minutes), as indicated by these lines:

...(task, pid=17433)Waiting for vllm api server to start......(task, pid=17433)INFO: Started server process [20621](task, pid=17433)INFO: Waiting for application startup.(task, pid=17433)INFO: Application startup complete.(task, pid=17433)INFO: Uvicorn running on http://0.0.0.0:8081 (Press CTRL+C to quit)...(task, pid=17433)Running on local URL: http://127.0.0.1:8811(task, pid=17433)Running on public URL: https://xxxxxxxxxx.gradio.live...(task, pid=17433)INFO 03-28 04:32:50 metrics.py:218] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 0.0 tokens/s, Running: 0 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 0.0%, CPU KV cache usage: 0.0%

🎉 Congratulations! 🎉 You have now launched the Llama-3 Instruct LLM on your infra.

You can play with the model via

  • Standard OpenAPI-compatible endpoints (e.g., /v1/chat/completions)

  • Gradio UI (automatically launched)

To curl /v1/chat/completions:

ENDPOINT=$(sky status --endpoint 8081 llama3)# Weneedtomanuallyspecifythestop_token_idstomakesurethemodelfinish # on<|eot_id|>. curl http://$ENDPOINT/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "meta-llama/Meta-Llama-3-70B-Instruct", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "Who are you?" } ], "stop_token_ids": [128009, 128001] }'

To use the Gradio UI, open the URL shown in the logs:

(task, pid=17433)Running on public URL: https://xxxxxxxxxx.gradio.live

Gradio UI serving Llama-3

To stop the instance:

sky stop llama3

To shut down all resources:

sky down llama3

Note: If you would like to try the 8B model, you can use the following accelerators:

resources:accelerators:{L4,A10g,A10,L40,A40,A100,A100-80GB}

Serving Llama-3: scaling up with SkyServe#

After playing with the model, you can deploy the model with autoscaling and load-balancing using SkyServe.

With no change to the YAML, launch a fully managed service on your infra:

HF_TOKEN=xxx sky serve up llama3.yaml -n llama3 --env HF_TOKEN

Wait until the service is ready:

watch -n10 sky serve status llama3
Example outputs:
ServicesNAME VERSION UPTIME STATUS REPLICAS ENDPOINTllama3 1 35s READY 2/2 xx.yy.zz.100:30001Service ReplicasSERVICE_NAME ID VERSION IP LAUNCHED RESOURCES STATUS REGIONllama3 1 1 xx.yy.zz.121 18 mins ago 1x GCP([Spot]{'A100-80GB': 4}) READY us-east4llama3 2 1 xx.yy.zz.245 18 mins ago 1x GCP([Spot]{'A100-80GB': 4}) READY us-east4

Get a single endpoint that load-balances across replicas:

ENDPOINT=$(sky serve status --endpoint llama3)

Tip: SkyServe fully manages the lifecycle of your replicas. For example, if a spot replica is preempted, the controller will automatically replace it. This significantly reduces the operational burden while saving costs.

To curl the endpoint:

curl -L $ENDPOINT/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "meta-llama/Meta-Llama-3-70B-Instruct", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "Who are you?" } ] }'

To shut down all resources:

sky serve down llama3

See more details in SkyServe docs.

Optional: Connect a GUI to your Llama-3 endpoint#

It is also possible to access the Code Llama service with a separate GUI frontend, so the user requests send to the GUI will be load-balanced across replicas.

  1. Start the chat web UI:

skylaunch-cllama3-gui./gui.yaml--envENDPOINT=$(skyservestatus--endpointllama3)
  1. Then, we can access the GUI at the returned gradio link:

|INFO|stdout|RunningonpublicURL:https://6141e84201ce0bb4ed.gradio.live

Finetuning Llama-3#

You can finetune Llama-3 on your own data. We have an tutorial for finetunning Llama-2 for Vicuna on SkyPilot, which can be adapted for Llama-3. You can find the tutorial here and a detailed blog post here.

Included files#