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ABSTRACT

With the aid of the EM (Enceding Machine) Compiler Tool Kit, a prel-
iminary version of a scalar C compiler was implemented on the Cyber 205 in a
relatively short period of time. This C compiler emphasizes functionality more
than efficiency. Several benchmark programs were used to measure the per-
formance and to campare it with an equivalent C compiler for VAX/UNIX?
system. In order to make it a production-quality C compiler, further cnbance-
ments will be nccessary. This paper presents some motivating factors, imple-
‘mentation details, and proposes further work on developing the Cyber 205 C
compiler.
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Implementing a scalar C compiler on the Cyber 205

Kuo-Cheng Li and Herb Schwetman

Department of Computer Sciences
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1. Introductlion

A supercomputer, the Cyber 200 Madel 205 (hereafter the Cyber 20.?), was installed at
Purdue University in the spring of 1983. It is the fastest computer in the world; only the
CRAY-1 [Russ78] scries [Buch83] is a competitor. However, as pointed out by Dijkstra, in his
Turing award lecture [Dijk72], "..as long as there were no machines, programming was no problem
ar all; when we had a few weak computers, programming became a mild problem, and now we have
gigafltic computers, programming has become an equally gigantic problem..."; In other words,
advances in hardware only create problems for software. Hardware is already fast, but haw to

take advantage of advanced hardware is the responsibility and challenge of software.

The "new” Cyber 205, although derived from the CDC STAR 100 [HiTa72] and therefore
retaining some of its software, has ounly a limited amount of software which exploits its
hardware capabilities. In the area of programming languages, there is only one high level
language - (vector) FORTRAN. This FORTRAN does not satisfy the demands of all groups of
users, €.8., it is awkward when dealing with character strings, complex program flow, recur-
sion, etc., and also it provides no aggregate data structures. There are several languages avail-
able in today’s computing world which have a structured syntax and hence can improve a
uscr's pro-ductivity and incremse a user’s satisfaction; these languages are also reasonably

efficient, allowing good utilization of the underlining powerful hardware,
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There are at least three approaches to the design of high level languages for vector {or

parallel) computers:

1. Vectorization: an automatic optimizer (e.g., [KKPL81]) which can detect inherent paral-
Ielism in a sequential program and generate code for the vector computer,

2.  Explicit, vecior-oriented syntax added 10 an existing !angua‘_qe: syntat;tic and semantic
enhanccments to an existing (scalar) language which allow users to directly specify vector
data types and vector operations, or

3.  New vecror (or parallel) programming language: design a new programming language

tailored to vector (or parallel) processing; implement a compiler for this language.
We elected to pursue the sccond altermative for several reasons:

1. Various surveys [Wcth80] [PeSt81a] [PeSt81b] have shown that vectorization alone is usu-
ally less satisfactory and less efficient for designing and constructing programs; many
users of vector or parallel computers prefer [anguages with vector or parallel syntax,

2.  The vector FORTRAN compiler provided by CDC already has an elaborate vectorizer,
so programmers wishing to use this approach have a means of doing so,

3. We feel the need for a structured language with vector constructs will be an essential
tool to support rescarch into vector algorithms,

4. By extending an existing (familiar) language, users will not need to make an extensive
investment in learning a new language; they can build on existing knowledge, and

5. By starting from an existing compiler, a reliable compiler for the extended language
could be constructed more economically (than a brand new compiler).

The programming language C [KeRi78] has become popular as a system implementation

and application language. For many of the reasons cited above we decided to implement C

with vector extensions for the Cyber 205.
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Before extending the language C, it was essential to have the existing (scalar) C imple-
mented on the Cyber 205, so that upward compasibiliry could be achieved. With the aid of the
Amsterdam EM (Encoding Machine) Compiler Kit [TSKS81], a scalar C compiler was imple-
mented on the Cyber 205. The current version of this C campiler emphasizes funcrionality
more than efficiency. Better performance can be achieved by later refinements, as is demon-
strated in this paper. |

This paper describes the implementation of this pretiminary version of CC205 (C com-
piler for the Cyber 205). In the following sections, the EM Toeal Kit, the Cyber 205 system,
and the programming language C are briefly described. Then, the implementation, problems

and performance issucs are presented and discussed.
2. The EM Compller Kit

2.1. Ratlonale

The Encoding Machine (EM) compiler kit is designed and implemented by Tanenbaum
et al. at the Vrije University, Amsterdam, The Netherlands [TaSS8O]. This-TooI Kit is used
mainly for assisting, in the sense of saving programming effort, the construction of (cross)
compilers for different programming languages on different machines. The approach
emplayed is l;uascd on the UNCOL (UNiveral Computer Oriented Language) approach [Stee60]
with some restrictions.

The idea of UNCOL is that, for N languages and M machines, it should be necessary to
build only N+M language processors, instead of N*M processors. In other words, only N
Front-Ends and M Back-Ends are needed (sce Figure 1). In Figure 1, the Front-Ends accept
source languages and generate intermediate code which is input to the Back-End, and th_cn
target object programs arc generated. However, this idea is probably teo ambitious, so some
restrictions are necessary. The restriction of the EM compiler kit is that only algebraic

languages for byte-addressable machines are considered [TSKSS1).
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Figure 1. UNCOL diagram {n Languages and m machinea)

2.2. Basic bullding blocks

Figure 2 shows the basic building blocks of the EM Tool Kit which is used in our imple-

mentation of CC205. As seen in Figure 2, the compilation proceeds as a series of translations,

as follows:

- the source program is tramslated into compact Eﬁ assembly code by the Front-End,

- the EM assecmbly code is (opticnally) translated by the peephole OPTimizer to optimized
EM code,

- the EM code is translated by the Back-End into the assembly language program of the
target machine (called META on the Cyber 205),

- the asscmbly language program is assembled inte object modules by the Cyber 205 assem-
bler, and

- the object code, plus entries from the C library, are made into executable modules by
the Cyber 205 loader.
The Front-End is a modified version of the PCC (Portable C Compiler) [John78]

[Joha80], in which the machine dependent part of PCC has been modificd to accommodate the

EM architecture and generate EM intermediate code. The EM intermediate code is similar to
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Figure 2. Basic building blocks of EM tool kit

P-code [NAJN75], but more gcncrz;\l, sil:Lcc it is intended for a wider class of [anguages (not
just Pascal).

Another adv%ntage of the UNCOL approach is that ooly one intermediate code optim-
izer is necessary for all languages and machines. The optimizer in the Tool Kit is a peephole

optimizer which scans the instructions in a window of a few instructions, replacing specified



-6-

code sequences by a semantically cquivalent but (hopefully) more efficient ones [TaS582].
The task of the Back-End is to convert the EM code into the object code (assembly language)
of the target machine; an instruction mapping table from EM code to the target object code is

the basis of this process.

2.3. Machlne architecture

The Encoding Machine [Tane78] [TaSS80] [TaSS82] is a simple stack machine; its instruc-
tion set is stack-oriented (i.e. reverse Polish type). Fundamental operations include pushing &
variable or constant onto the stack, poping the top of stack, and performing arithmetic opera-
tions on the top two stack items. Branching depends on the top one or two stack items, and
the instructions for calling and returning from procedures, etc, also usc the stack. These
stack-oriented instructions were chosen to match closely the semantic primitives of common
algcbraic languages. Furthermore, the instruction set is daiéncd to incorporate a highly com-
pact encoding scheme, this encoding scheme is based on results of extensive empirical investi-

gations [Tane78].

The Encoding Machinc has no general purpose registers; it does have a few special pur-
pose registers such as the Local Base register {LB, equivalent to the frame pointer {fp} in the
VAX) and the Stack Pointer (SP). General purpose registers are normally used by compiled
code to (1) hold intermediate results while computing complicated arithmetic or logical
expressions and (2) hold frequently used local variables. However, several studies
[Knut71][Tane78] have shown that a typical arithmetic expression is not complicated and, in
fact, references, on the average, fewer than two operands. In addition, recent emphasis on
structured programming (which advocates the use of many small procedures) means that the
usc of registers to hold local variables could require significant overhead in the prologucs and
cpilogues of procedure calls. Thus, the need for gencral purpose registers is probably not as
great as in earlier situations. Furthermore, reverse Polish code is much easier to generate

than multi-register machine code, especially if highly efficient code is desired. If necessary,
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part of the top of stack can be kept in a high speed memory (e.g., a cache) to achieve accept-

able performance [Orga73].

2.4. The lmpact on onr project

The UNCOL approach dictates that the Tool Kit be highly modular. Writing one Front-
End for a new language is normally sufficient for implementing that language on scveral
machines; similarly, writing a Back-End for one machin¢ is normally sufficicnt for having it be
used by several other languages on that machine. However, this did not bencfit us, since our
intention was to implement onec language on one machine. Yet, using this Tool Kit did save

us a lot of time and cffort, when compared to developing a compiler "from scratch”.
The possible problems we imagined at the beginning of this project were:

1. Incompatibility between the EM and the target machine: some EM codes may be mapped
onto cxpensive target codes, and some target codes may not be mapped at all. As an
example, the scalar instructions of the Cyber 205 are register-oriented, which are very

different from the stack-oriented EM instructions, and

2. Inefficiency due to the insroduction of intermediate code: the compilation process is slowed
down becausc the generation of object codes is indirect, i.e. involves two distinct steps

(EM code and asscimnbly language).
3. The Cyber 208 system

. 3.1, General history
The Cyber 205 central computer, onc of the few existing commercially available super-
computers, is a large-scale, high-speed computing system. It was first announced in 1980 and

installed at Purdue Unijversity in the spring of 1983.
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The Cyber 205 is a descendent of the CDC STAR 100 (1965 - 1975) which had several
problem areas [HoJe81] including, slow main memory (1200 ns access time), slow scalar arith-
mctic (four times slower than CDC 7600 and IBM 360/195), long vector start-up times (3 - 7
ps), and unit vector increment (vector clements had to be in contiguous locations). The
Cyber 203 in 1979 overcame the first two problems of the STAR 100 by utilizing LSI circuits in
the CPU and bipolar memory, to obtain a 20 ns clock period (also called minor cycle) and 80
ns memory access time. In 1980, the Cyber 203 was re-enginecred to overcome part of the
third disadvantage, and its advanced features, such as stream processing, virtual addressing,
and hardware macroinstructions were improved. This improved machine is designated the
Cyber 205. However, because of the inherent properties of the machine architecture, the vec-
tor clements still nced to be in consecutive memory locations. Nontheless, noncontiguous vec-

tor clements can be processed using the scatter/gather and compress/merge instructions.

The Cyber 205 is considered to be the fastest machine in the world, because it has a
maximum processing rate of 400 MFLOPS (Million FLoating-point Operations Per Second) for
64-bit operations or 800 MFLOPS for 32-bit operations; these asymptotic rates are based on

processing vector data using four arithmetic pipelines and linked triadic operations.

3.2, Machloe architecture

Figure 3 is a simple block diagram of the Cyber 205. It is composed of the CPU, Central
Memory (CM), and the Maintenance Control Unit (MCU), ctc. The functional characteristics
of the Cyber 205 arc bricfly described below; a more detailed description of each functional
block can be found in [CDC81a]. The CPU comprises a scalar processor, a veclor pracessor
and several 1/0 ports. Since the current version of the C compiler uses only the scalar instruc-
tions of the Cyber 205, only the scalar processor will be described.

The Cyber 205 has a high speed register file with 256 full-word (64 bits) registers, which
is used for holding operands and results for scalar instructions, and for instruction and

operand addressing, indexing, and storing constants and field length counts, etc. There is 2 64
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Figure 3. Cyber 285 Block Diagram

full-word semiconductor instruction stack for the optimization of programmed scalar loop
itcration.

The scalar processor (see Figure 4) features five independent arithmetic functional units
which are pipelined so as to accept new operands every clock cycle. An exception is the
Divide/Sqrt/Convert unit for which a new operation can not be issued until the completion of
the previous operation; this is the only portion of floating peint units which is not pipclined.
The Cyber 205 hardware supports floating point, integer, byte, and bit data types, where float-
ing point and integer variables can be either full-word or half-word in length. A full-word
integer is 48 bits, which is actually a floating point variable with zero exponent.

The Load/Store unit contains six address registers. A load instruction requires one

address register, while a store requires two address registers. Hence, the Load/Store unit is

capable of strecaming load/store instructions at one load per minor cycle and one store per two
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Figure &. Scalar Processor Block Diagram

minor cycles, except for the STOC instruction - store character, which is one per 14 minor
cycles. Furthermore, the Load/Store unit can load a word [rom central memory into the
register file in 15 minor cycles (300 ns), and store a word into memory in 10 minor cycles,
Therefore, a sequence of N loads can be executed in (N +14) cycles, whereas a stream of N
stores can be exccuted in 2N+8 cycles. These times assume no memory conflicts or register-
busy conditions. Five minor cycles may be required to release a register, and a minimum of

four minor cycles to resolve a memory conflict.

The scalar process also has a short-stop featurc which is the mechanism by which a result
from any arithmetic unit may be used directly as the input to any arithmetic unit. This occurs
in paralicl with the storing of the result into the register file (sec the timing analysis in Section
6.22). The time saved by short-stop (avoiding the store of the result into the register file and
the retricve of it back to the next arithmetic unit) is three minor cycles. Utilizing this benefit
is not trivial as the timing constraints are critical. For example, instruction A, issuing at time
T, generates a result which is to be used by instruction B; instruction B must be {ssued no

later than T +55, where 5§ is the short-stop time; if missed, instruction B can only access the



- 11 -

result from the register file.

The Cyber 205 has a virtual memory mechkanism whose page table is the combination of 16
associative registers and a space table which resides in a restricted area of central memory.
The virtual memory mechanism performs high speed address mappings from the logically con-
tiguous addresses to the physically noncontiguous storage system. The virtual address space is
4 trllion words {addressed by 48 bits); half of the address space is available _for each user; the
other half is reserved for system use. Memory can be addressed in full-word, half-word (32
bits), byte (8 bits) and bit units. In the Purduc configuration, the size of physical memory is
one million 64-bit words, which could be extended to two or four million wo-rds; the page sizes
are 2048 words (small pages) and 65536 words (large pages).

From a user's point of view, many operations in the Cyber 205 are performed in a serial
fashion, while other operations are performed in & semi-parallel (pipelined) mode. In fact, all
operations are issued in strict sequence from the Instruction Issue Unit and form a single
instruction stream. Also, since the scalar/vector processors operate on ntultiple data (due to
the multiple functional units and the pipelined segments in each functional unit), this machine

can be classified as a SIMD (Single Instruction stream, Multiple Data stream) machine [Flyn66].

The Cyber 205 is designed primarily for processing tasks which require intensive compu-
tations and/or large amounts of main memory. Some I/O operations and many other support
functions are left to Front-End computers (e.g., CDC 6000's, or DEC VAX's) via the /O ports
and the Loosely Couple Network (LCN). Each I/O pﬁrt is capable of 200 megabits per second
maximum transfer rate; the LCN can sustain a transfer rate of up to 50 megabits per second (a
peak rate which is rarcly achieved). This functional hardware concept of distributive process-

ing is the cornerstone of the Cyber 205 system architecture.



3.3, Software
The software of the Cyber 205 includes:

- a multiprogramming operating system - Cyber 200 VSOS (Virtual Storage Operating Sys-
tem) {CDC81b],

- programming languages such as FORTRAN, IMPL (a system implementation language

similar to Fortran) and META (an assembler), and

- other utility programs such as LOAD (a link loader), OLE {Object Library Editor which
is akin to ar in UNIX)}, etc.

META, the assembler for the Cyber 205 [CDC8Ic], gencerates relocatable binary output
| which is then linked and loaded by LOAD. META provides a conditional assembly capability,
a procedure and function definition capability, 8 sct capability to define, reference, and
extend the list of expressions, and attribute assignmeat for symbols, etc. The mapping table in

the EM Back-End is designed to map EM instructions into META assembly code.

4. The C programming language

The language C [KeRi78] was created by Dennis Ritchic and developed at Bell Labora-
tories at Murray Hill, New Jersey, in 1972. It was used in rewriting the assembly language ver-
sion of the UNIX operating system on the DEC PDP-11 (except for a few very low level rou-
tines) so that transporting UNIX to another computer became mainly a matter of writing a C
compiler for the target machine [Mill78] [MiTa82]. In spite of its intimate rclationship with
UNIX, C has earned a reputation as a good systems programming language and has even been
called a kigh level assembly language. It is also a powerful application programming language
[FeGe82|; ¢g., it has been used in movie production (the computer graphics animation in the

"Star Trek II” and "Return of the Jedi® were written in C [Robe83]).

Another important characteristic of C is its high degree of portability. This Is due to fact

that its data types and control structures are supported directly by most existing computers,
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and the low Icvel machine-dependent (e.g., I/O) issues can be resolved by use of run-time
library functions. The Portable C Compiler (PCC) [John80] has made C movable to many
other main frames with different idiosyncrasies, such as the IBM system/370, the Honeywell

6000, the Interdata 832, the VAX 11/780, and many microcomputers {BY TE83].

C has most features common to high level programming languages, features such as
structured fiow-control, recursion, fundamental data types (with structures, and unions), as
well as several unique features, such as bitwise logical operations, increment and decrement
operators, pointer arithmetic, static variables, register variables, fields, casts, etc. Its funda-
mental data objects are floating point numbers, integers of different sizes, and characters, and
it has derived data types created by using pointers, arrays, structures, unions, and functions.

Efficient manipulation of bits is vital to systems programming. C has this capability
which exists in only a few other high level programming languages. Furthermore, most
hardware instructions deal with machine addresses directly, and C has pointers (which
correspond to machine address) and the capability of doing pointer arithmetic. By virtue of
these capabilities, C is capable of genecrating efficient code for critical scg;ﬁmnts and for con-
structing and manipulating efficient data structurcs.

Argument passing in C is call-by-value; call-by-reference can be achieved by passing the
pointers {(or the addresses) of data items. C is a typed, but not a strongly-typed, language; this

will be helpful later when implementing the proposed vector extensions [PeCME3].
5. The deslgn and implementatlon of CC205

5.1. Planning
The task of implementing a (scalar) C compiler {designated CC205) on the Cyber 205

using the EM Tool Kit was broken into five major stages:
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Install the EM Tool Kit on our VAX!UNIX system: The EM Tool Kit, written in the V7 C
language, was developed on the PDP-11/70 under the Version 7 UNIX operating system.
At our site the C compiler executes on a VAX-11/780 running the Berkery 4.1bsd UNIX,
This phase of the project required us to become acquainted with the EM Tool Kit (the
EM package is, unfortunately, not well documented) and to tackle some of the machine
dependent problems.

Design and build the Back-End instruction mapping table: This phase of work required
knowledge of the Cyber 205 architecture and its META assembly language. As men-
tioned before, EM is a stack machine and may assume that the target machine has a
hardware stack. In contrast, the Cyber 205 is register-oriented machine, and it does not
have a hardware stack mechanism (i.c., hardware instructions for automatic manipula-
tion of the stack pointer); therefore, a software stack is necessary.

Design a C start-up rowtine and install the C run-time library: A start-up routine was

needed for interfacing the run-time C program and the Cyber 205 system. The C run-

time library is a set of modules which is divided into three sub-libraries:

gen - gencral functions, e.g., ‘malloc’, a memery allocation function,

stdie - standard I/O functions, e.g., 'doprat’, a printing formator, and

sys - system functions, e.g., ‘ccad’, “write’, ‘creat’, ‘open’, and ‘close’ etc., low level /O
functions.

Since most of the library routines are already implemented in C and, also because of the

high portability of C, the main pact of this phase consisted mainly of developing the low

level system functions.

Boorstrap CC205 1o the Cyber 205: Steps 1, 2 and 3 led to a compiler which executed on

the VAX/UNIX system and produced META code, which could then be uploaded to the

Cyber 205 for asscmbly, loading and execution. The goal of the bootstrap phase of the

project was to move the compiler itsclf onto the Cyber 205. Some machine dependent
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and portability problems were expected. (Also, this was a good test of the compiler).

5.  Optimization: A straightforward mapping of instructions resulted in a great deal of

redundant code; further optimizations were needed.

5.2. The address space and C run-tlme stack

The Cyber 205 has a dynarﬁic space, really a virtual space, lying between the code-data
sections and the public library [CDC81b]; this could be used as the run-time stack required by
procedure calls. A procedure call is expensive for 2 register-oriented machine. It may be even
more expensive on the Cyber 205 because it may involve a vector instruction (swap) to swap
the caller’s environment registers and working registers (sce Figure 5 for the register file) at its
prologue; similar costs arc incurred on procedure exit (in the epilogue), and the start-up time

of the vector instruction ‘swap’ is nantrivial (either 28 or 56 minor cycles).

However, because the EM Tool Kit does not use any general registers, the procedure-call
mechanism in our current C Compiler is different from the conventional one used in the
Cyber 205. Onr procedure entry the prologue performs the following four actions (sece Figure
6):

1. Save the rcturn address,

2.  Save the local base (LB),

3. Update LB, and

4.  Allocate the space for local variables,

and the epilogue docs the reverse actions, namely, restore LB and retura to the caller. These
actions mean that we must have a C run-time stack in the address space.

Figure 7 shows the block diagram of the address space. The Cyber 205 allows us to
select the interleaved code-data format or the separated code-data format; the former format

is the default. As shown in Figure 7, the C run-time stack is positioned in the area between

the code-data segments and the VSOS dynamic stack. The stack pointer (SFP) is initialized at
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Figure 5. Register File

some proper location and grows upward, ie., when pushing a data onto the stack, SP is
decreased first, then the data is stored. Just below the C run-time stack is the VSOS dynamic
stack which grows downward. It is used for the conventional procedure calls as mentioncd
above (the low level system functions in sys need to use conventional calls). A heap, growing

upward against the VSOS dynamic stack, is used by the C run time storage allocation.
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5.3. The instruoction mapplog from EM to META

53.1. General

The EM assembly language [TaSS80] has 12 pseudo instructions for storage declaration,
and procedure indication, etc., and 132 machine instructions including loads, stores, arithmetic
(;pcrations, comparisons, branches, and procedure calls, etc. Not all EM instructions are used
in the C language conventions, hence the unused EM instructions are not generated by the C
compiler (note that EM is designed for many languages, not simply for C).

The Cyber 205 has 214 instructions [CDC81a}, including vector, vector macro, and meoni-
tor instructions, ctc., and some directives [CDC81c] which are assembler mnemonics. For the

scalar C compiler, only a few instructions were used.

5.3.2. The slze specificatlons of data types and patentlal portablilty problems

The sizes of fundamental data types are parameterized in the EM Tool Kit. Table 1
shows the specifications emplayed in our first version of CC205. With these specifications,
several potential portability problems (for existing C programs) may be expected, since in our

current environment (VAX/UNIX C), a C program has the specifications shown in Table 2.
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Flgure 7. Address Space

Some of these possible portability problems include:

1. size-dependent problems: As shown in Table 1, ‘short’ is 64 bits, not 16 bits es defined in

Table 2, this may cause data objects to be misinterpreted. For example, a memory word
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Size Number of bits

word
pointer
long
int
short
char
float
double

TR 22222

Table 1: Version 0 size specifications for CC205.

Size Number of bits
word 32
pointer 32
long 32
int 32
short 16
char 8
float 32
double 64

Table 2: Sizc specifications for VAX C.

containing 0xFFFF in hex (65535 in decimal) is interpreted as -1 in the 16-bit short mode

(i.c., the current VAX C environment) but as 65535 in 64-bit short mode.

2. machine-dependent problems: The full-word integer in the Cyber 205 is 48 bits, (not 64
bits as given in the specification); this forms a "hole” (the Ieft most 16 bits of a word) in
memory, which is not expected by the EM and the other C programs. The bit position is
increased from Isb {least significant bit) to msb (most significant bit) in EM, while in the

Cyber 205 it is in reverse order.

The first problem can be solved by modifying the programs to do sign-extension explicitly, and

the sccond problem may be significant only when the existing C programs doing bitwise
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opcrations, such as bitwise AND, OR, SHIFT, ctc. This could be solved by modifying the bit-
wise opcrations to fit the new specification. For developing a new program, these should not

be problems, since users should know the sizes of the data types.

§.33. Other characteristics

Characters in the Cyber 205 are, fortunately, represented in ASCII code, (which is
significantly different from thé traditional CDC series of computers in which a character is
represented in 6-bit ‘display codc’, with only the upper-case characters, plus digtts, punctua-
tion marks and operators). This makes C programs running on the Cyber 205 more conven-
tional {i.e. not forced to usec upper-case only). Also bootstrapping the compiler is more
straightforward; however this incompatibility with the older CDC systems complicates the pro-
cedure of building CC205, because the current Froat-End computer is a CDC 6600 and all
files have to be stored in binary form on the 6600 before transferring them over to the Cyber
205, |

Memory addressing on the Cyber 205 is in bit units, which is different from byte-
oriented machines such as the EM and the VAXNX. Also the hardware of Cyber 205 does not
provide for indircct addressing; this can be implemented using additional load (LOD) instruc-

tions.

5,3.4. Global deflnltion, Instroction mapplng table end instructlon mecros

The global definition table, used as an included file for the CC205 gencrated META pro-
grams, symbolically defines thé global registers (e.g., stack registers: SP and LB, constant regis-
ters, etc.) and the scratch registers. The instruction mapping rable defincs blocks of in-line code
without labels, and other blocks are defined elsewhere as instruction macros which are sets of

META proccdures containing labels.
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Because a sofrware stack is employed, cach EM instruction is, most of the time, mapped
to at least three META insiructions, ¢.g., an EM instruction LOC ¢ (load constant ¢ onto

stack) is mapped as follows:

es tic * enter register t1 with constant ¢
is sp,64  * decrease stack pointer by one word (64 bits)

lod sp,tl * push (t1) onto the top-of-stack

5.4. The C start-up routine and Iow level system fonctions
The C start-up routine, used for e¢ntering the C run-time enviconment, pcfforms several
tasks, including:
1. TInitializing the constant registers, the C run-time stack pointer, and the VSOS dynamic
stack pointers,
2. Settiﬁg up the command-line arguments (argec.argv) and handling redirection of /O files,
3. Opening the standard input (stdin), output (stdout), and error (stderr) files, -and initializ-
ing the filc descriptor table which is a table containing the Cyber 205's file logical unit
aumbers (fiun) indexed by C’s file descriptors (fd), and
4, Jumping to the main routine.
At program termination, the routine exir is called to "flush out” the I/O buffers; control is
then returned to IVSOS.
The System Interface Language (SIL) [CDC81b] of the Cyber 205 is a set of subroutine
calls which allow a task to exchange information with the operating system and to perform file
I/O operations. The low level system fuactions of C are all implemented in META using SIL

calls. The asscmbled low level functions with the rest of the {(compiled and assembled) C

run-time library are built into an object library (CCLIB) using OLE (Objcct Library Editor).
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At the completion of this phase, we had a cross compiler available at the VAX site, ie.,
C programs can be compiled on the VAX machine, and then the generated META programs

can be uploaded to the Cyber 205 for assembly, loading, and exccution.

5.5. Bootstrapplng CC205

The process of bootstrapping [AhUI77] is shown in Figure 8, where the notation 74 ©
means a transiator T, written in language &, translates language 7 into language 0. In the
first stage, CC 205§ ™ (written in C, accepts C code and translates it into META code) goes
through €C§ ¥ on VAX (CC in VAX machine code accepts C code and produces VAX
machine code) produces a cross compiler (CC 2055 ¥). Then, in the sccond stage, as indicated
by the dotted line, CC205& ¥ goes through the cross compiler CC205¢ ¥ and produces
CC2055 ¥ That is, the whole EM Tool Kit is processed as input fo the cross compiler, a
META version of CC205 is generated, and then it is assembled and link-loaded as a controllee
file [CDCB1b] (an exccutable file) on the Cyber 205. This completes the bootstrapping process,
and a scalar C compiler is available on the Cyber 205 together with the C run-time library
(CCLIB) and other libraries (e.g., LIBM - math library) and utilities (¢.g., EXPAND - expands

tabs into spaces).

CC2055 ¥ ce§V |—| CcC205§ ¥ || CO20S G ¥

b 2

i The second stage I

Figure 8. Bpotstrapping Process




6. Performance lssues

6.1. Inherent inefficlency and possible cores

The preliminary version of CC205 did not take full advantage of the register file; in fact

only a small portion of the register file was used. Furthermore, as mentioned in Section 2.4,

the possible incompatibility and inefficiency (in compilation time) of using the EM Tool Kit,

makes it difficult to compete with the hand crafted Cyber 205 Fortran compiler in terms of

running time of compiled code. To improve the performance of CC205, several enhancements

were considered; these possible enhancements included:

1.

Remove redundans code:

Because of the instruction mapping, the object program generated I:;y CC205 contains
many redundant instructions. For example, a value (in a register) is pushed {stored)
onto the stack in one EM instruction, and the next EM instruction pops (loads) it out to
the same register. This is a very common phenomenon in the current ;chemc of code-

mapping, and, unfortunately, load/store takes much more time to exccute than the other

scalar instructions.
Keep top portion of stack in the register file:

Keeping the top portion of the stack in the register file could improve performance
significantly. However, META (really the 205 instruction sct) does not allow dynamic
addressing of registers (i.e., a register cannot point to another register); it only allows
static addressing of registers (from assembled instructions). To "build® instructions to
simulate dynamic addressing capability for registers might be possible, but it would prob-
ably be expensive. Also, this might incur considerable overhead in the Back-End, to
jmplement a mechanism which manages the portion of the stack efficiently so that when
the stack in the register file is full, part of the stack would be swapped inte memory;

also when referencing a variable, we need to know whether it is in the register file or in
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the memory.

Another plausible approach is as follows: when a procedure cail occurs, swap the current
stack in the register file into memory, then do the ‘prologuc’ operations and, at the end
of the procedure, do the reverse operations. In this case, the top portion of the stack
(evaluation stack) in a procedure is always kept in the register file, and the improvement
over the curr;:nt method should be significant. The problem here is that the growth of
the stack in the register file is unpredictable. More precisely, keeping track of the size of
the stack at assembly time or in the Back-End is sometimes impossible, because for some
EM instructions (e.g., LOS, STS, BLS, ASS ,and DUS), the growth or shrinkage of the
stack is runtime dependent. (According to the statistics gathered from 104 CCLIB func-
tion modules and the entire EM Tool Kit, these five EM instructions were never gen-
erated; also, the data in Table 6 on the maximum depth of the register stack shows that

excessive register growth is probably unlikely).
Maintain all scalar global variables in the register file:

In order to further improve performance, a possible approach is to have all global vari-
ables (scalar variables and pointers to arrays or strings) reside in the register file. In
other words, the preferred programming style would be changed so as to favor having
many variables as global variables. This approach has some limitations: first, due to the
limited capacity of the register Gle, only the first, say 200, global variables can be located
in the register file; second, all source files must include a common set of global variable
definitions. However, considering the potential improved performance, this may be

worthwhile.
Force local scalar variables to the register file:

This approach, though it suffers from the argument that notable ovcrhead may be
incurred during procedure calls [Haik82][BaBK76}, may be able to achicve good perfor-

mance most of the time. This approach may require significant modifications of the EM



Tool Kit.

6.2. Optimlization

6.2.1. A peephole optimizer

A META peephole optimizer, implemented as a post-processor to the Back-End, was
added [Ande83]; this optimizer removed some of the redundant META instructions (see
Approach 1 in Scction 6.1). Basically, the optimizer performs pattern matching within a basic
block, where a basic block is sequence of instructions delimited by a [abel, the end-of-
procedure, or the end-of-file. A window of imstructions is matched against target patierns,
where the window size is defined as the length of the [ongest target pattern. Pattern matching
is done by several finite automata which perform instruction-matching and then operand-
matching. Matched instructions are replaced with a replacement pattern and the whole pro-

cess is repeated until no more instructions are matched.

The current META optimizer removes small parts of redundant code; more redundant
code could be removed by adding more target patterns. Pattern matching does incur heavy

ovcrhead for the whole compilation process, (see the compile time data in Table 7).

6.2.2. Back-End Optimlzer

Bascd on Approach 2 in Section 6.1, the Back-End has been extended to have a register
stack for the evaluation of expressions, i.e. the evaluation stack resides in the register file,
rather than the normal run-time stack in memory. (We define this version as Version 0.1 of
CC205, and the previous version with straightforward code mapping as Version 0.0). That is,
instead of mapping instructions in the straightforward manner (ic., all intermediate results
storcd on the memory stack), registers are used to hold the intermediate results within an
expression. This results in a significant reduction in the number of Ioad and srore instructions

(note that loads and storcs are expensive instructions in scalar mode). As an example,
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consider the statement a =b* +3, where ¢ is an argument, and a and & are local variables.
Table 3 shows the- code generated by EM, Version 0.0 CC205 (CC 205) and Version 0.1 CC205
(CC205,). In Table 3, t0, t1, t2, and t3 are scratch registers and c_1n, ¢_2, ¢_2n, and ¢_3 are
constant registers. As shown in the table, six EM instructions wers mapped into 25 META
instructions by Version 0.0 CC205, whereas only five META instructions were generated by

Version 0.1 CC205.

EM CC 205, CC 205, Comments
LOL -16 | es t1,-2 lod [Ib,c_20]t0 | load b
lod [lb,t1],t2
is sp,-64
sto sp,t2

LOL O es 11,2 lod [ib,c 2Ltl | load c
lod [ib,t1),12
is sp,64
sto sp,t2

MLI 8§ lod sp,tl mpyx t0,11,t2 t2 = b%
is sp,64

lod sp,t2
mpyx tZ,tit3
sto sp,13

LOC 3 es t13 [oad constant 3
iz sp,-64
sto sp,tl

ADI S8 lod sp,tl addx t2,c 3,13 t3=t2+3
is sp,64

lod sp,t2
addx 12,t1,t3
sto sp,t3

STL -8 lod sp,t2 sto [Ib,c_1n],t3 | store into &
is sp,54
es t1,-1
sto [lb,t1],12

Table 3. Instruction mappings fora =b% + 3

The timing analyscs [CDC82] of these two sets of META instructions are shown in the

Tables 4 and 5, where the interpretation of cach column is shown as follows:
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Instructions Issued | Stacked | Short-stop | Register | Memory
es t1,-2 0 1 4
iod [Ib,t1],t2 1 16
is sp,-64 2 3 6
sto  sp,t2 3
es 1.2 5 sto 6 9
16 sto 26
lod [Ibpt1]p2 17 32
is sps64 18 19 22
sto  sp,t2 19
26 sto 36
lod sp,tl 27
is  sp,64 28 lod 29 32
35 lod 51
lod sp,t2 37 52
mpyx  (2,t1,t3 3
52 mpyx 57 &0
sto  sp,t3 53
es t1,3 55 sto 56 59
is sp,-64 56 sto 57 60
57 sto 67
sto  sp,tl 58 63
lod spitl 60
is sp,64 61 lod 62 69
68 lod 83
lod sp,2 69 84
addx  t2,t1,t3 70
84 addx 85 9
50 Sp,t3 85 95
lod spit2 87
is  sp64 88 lod 89 92
€s tl,-1 89 lod %0 93
95 lod 110
sto  [Ib,t1],12 0%
110 sto 120

Table 4. Timing analysis (Version 0.0)

1.  issued: the time (in terms of minor cycles) when the instruction is issued,

2. stacked: the instruction stacked in front of the Floating-Point unit; at most one instrue-

tion at a time can be stacked,
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3.  short-stop: the time when the result is available at the short-stop register, |

4.  register: the time when the result is available at the register file, and

S.  memory: the time when the result is available in memory.

According to these timing enalyses, result a is available in memory in 120 minor cycles for the
Version 0.0 generated instructions and in 32 minor cycles for the Version 0.1 generated
instructions. Hence, the _execution time of this statement for the Version 0.1 Compiler is

roughly a factor of four shorter than that of Version 0.0 compiler.

The overhead associated with the procedure call is [imited in this approach, because the
szratch registers nced to be saved only when there is a procedure-call argument, ¢.§., in a pro-
cedure call P(a, Q(b,c), d), the scratch register, storing variable d, needs to be pushed onto the
memory stack when procedure Q is called. The activation record is extended as shown in Fig-
ure 9. Also, when branching occurs and the register stack is nonempty, a push/pop between

the register stack and memory stack is needed.

Instructions Issued | Stacked | Short-stop | Register | Memory
lod  [lb,c_2a],t0 0 15
led [lb,c_2],t1 1 16
mpyx t0,t1,t2 2
16 mpyx 21 24
addx t2,c_ 3,3 17
21 addx 22 25
sto  [lb,t1],t2 22 32

Table 5. Timing analysis (Version 0.1)

The static statistics gathered while compiling the 104 library routines end the entire
CC205 compiler (which has total of 31 modules) arc shown in Table 6. In Table 6, eight
modules have depth zero; this is because they are data files. The average maximum depth of

register stack is 3.4 (excluding the data files). -
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SP- local,

Local variables

localy
LB- old LB
ret. PC
argp ]
foargy

Actual parameters

arg; 1
regisrery

Scratch registers

register;

/
Flgore 9. Activation record for a procedure call

Maximum Depth | Number of Modules

0 8

5
19
50
37
10

3

=1 on th B oW N

Table 6. Maximum depth of register stack for 135 modules

Obviously, another achievement of this optimization is that a significant amount of pro-

gram space is saved (see for example Table 3).

6.3. Benchmark r-uns

Five benchmark programs were used to compare the preliminary versions of CC205 with
the VAX C compiler. Four of them are from [HoBK83], namely, (1) the Sieve of Era-
tosthenes, (2) Floating-point, {3) Sorting, and (4) Fibonecci series benchmarks (sec Appendix).

Actually, in [HpBK83], there are five benchmarks; the fifth one is a disk file /'O benchmark.
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Currently, we still have problems with CC205 handling random access files. The fifth bench-
mark is a Queueing Network Model solver - PMVA (Purdue Mean Value Analysis) [Schw80],

which evaluates several thousand network population configurations.

The compile times (the CPU time required to generate assembly code) for these bench-
mark programs on the VAX and the Cyber 205 are shown in the Table 7, where the column
labeled VAX C means the compile time using VAX cc, the columns labeled CEMq, CEM,
and CEM  represent the compile times using the cross compilers (Version 0.0, Pcephole Meta
Optimizer and Version 0.1 respectively) running on the VAX 11/780, and the column labeled
CC 205, means the compile time using the Version 0.1 C compiler on the Cyber 205, From

Table 7, we can sce that the overhead (CEM, vs. CEM ) incurred by optimization is about

13%.
Benchmarks || VAX ' | cEM{ | CEM} | CEM[ | CcC205¢
sieve.c 09 29 60 33 0.4
sort.c 20 71 19.9 82 1.6
fiboc 0.7 2.7 46 32 03
float.c 13 20 83 33 04
pmva.c 9 48.1 2458 519 14.1

t compiled on VAX
£ compiled on Cyber 205
Table 7. Compile times (in seconds)

Table 8 shows the execution times of the compiled benchmark programs, where
Fbimprovement means the percentage improvement of the CC205; gencrated code over the
CC 205, generated code. The long execution time (24.6 seconds) of fibo.c on VAX C indicates

that the VAX C is inefficient for a large number of recursions.
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Benchmarks [ VAX ¢T | ¢c205f | cc205% | CC205f | % improvement®
sieve.c 28 161 1.00 0.67 58.39
sort.c 209 1292 8.1 4.61 6432
fibo.c 246 3.60 265 2.15 4028
floatc 19 037 022 0.18 5135
pmva.c 154 789 504 251 68.06

+ executed on VAX
% executed on Cyber 205
* (CC 205, — CC205;) / CC 205,
Table 8. Executioa times (in seconds)

6.4. Anuthel_' slze speclficatlon

In order to make CC205 more compatible with existing C programs, another st of size
specifications of data types as given in Table 9 was tried. However, this version of CC205
turned out to be about twice as slow as the previous one, because it caused more instructions
to be gencrated. To see this, when accessing a local ‘int’ variable using the previous size
specifications, only one EM instruction is generated (e,g,. LOL -8, load local variable), but
using the [ater specifications, two EM instructions are produced (e.g., LAL -4 and LOI 4, i.e.,-

load address of the local variable then load indirect of four bytes).

Sizc Number of bits

word
pointer
long
int
short
char
float
double

TR B RRR

Tahle 9: Alternative size specifications.

The later version (with specifications from Table 9) has advantages for space-saving and
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portability, but its disadvantage is poor performance. Since space is not a critical issue on the
Cyber 205, and, based on the experience of bootstrapping CC205, portability is not a scrious

problem (see Section 532), we have retained the previous size specification.

7. Summary and Futore Work

The EM Too! Kit has allowed us to construct a C compiler for a new machine (the
Cyber 205) in a relatively short period of time_. (about four man months). The cost of using
this approach lics in the (relatively) imefficient compiler and compiled code. Our initial
experience indicates that application of successive optimization steps can lead to acceptable
performance.

The project has several research goals, which will be pursued as the scalar C compiler
becomes stable. One goal is the development of instrumentation in the compiler and in the
generatcd code. This instrumentation will be used to assess the effects of the various attempts
at performance improvements.

The other major goal is the introduction of extensions to the C language which can
allow programmers exploit the vector features of the Cyber 205. The super-speeds of the
Cyber 205 are recalized only when problems can be formulated in terms of vectors and vector
processing. We feel that C is especially well-suited to the introduction of vector (and sub-

vector) data types and vector operations.
Our plan then can be summarized in three steps:
1. Implement stable scalar version of the CC205 compiler,

2. Modify the compiler to provide instrumentation for measuring performance of the com-

piler and the compiled code, and
3.  Extend the CC205 compiler to add vector data types and vector operations.

Once the instrumented compiler with vector extension becomes available, a variety of

research questions can be addressed. Among these, we include:
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1. What are the benefits of vectorization?

2. How can scalar algorithms be converted to their vector analoges? can this be
automated?

3. ' How can stack-oriented la;nguageﬂ' be cfficiently implemented on machines without
stacks?
We feel that our approach, vector-oriented extensions to an existing structured scalar
language (together with an instrumented compiler), will allow us te engage in fruitful,
scientific research on thesec and other topics. The fact that we can easily alter the compiler

means that many approaches can be tried.
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10. Appendilx - Listing of benchmark programs

/* sleve.e - Eratosthenes Sieve Prime Number Program */

#define true 1
#define false O
#define size 819D

char Hags[size+1];

main()

{ int i,prime k,count,iter;
printf("10 iteration$n™);
for (iter = I; iter < =10; iter++) {




count = 0;
for (i = 0; i < = size; i++) flags]i] = truc;
for (i = 0; i < = size; i++) {
if (Hags[i]} {
prime = i+ i+ 3;

for (k = i+prime; k< =size; k+= prime)

Aags[k] = false;
count ++;
}
}

printf(".n%d primes\n",count);

/* fibo.c - The Fibonacei series benchmark */

#include "STDIO”

#dcefine NTIMES 10

#dcfine NUMBER 24

main()

{ int i
unsigned value, fib(};
printf("%d iterations: ", NTIMES),
for (i=1; i < =NTIMES; i++) value = ib(NUMBERY);
printf("fibonacci(%d) = u\n", NUMBER, valuc);
exit(0);

}

unsigned fib{x)
int x;
{
it(x>2)
return(fib(x-1) + fib(x-2));
clse
return(l);

I* sart.c - Quicksort benchmark */
#include "§STDIO"

#define MAXNUM 1000

#define COUNT 10

#define MODULUS ((long) 0220000}
#define C 13849L

#define A 173L

lonpg seed = 7L;
long buffer [MAXNUM] = {0};



long random();

main()
{ intij;
long temp;

printf("Filling array and sorting %d time\n",COUNT);
for (i=0; i< COUNT; ++i) {
for (j=0; j < MAXNUM; ++j)}{
temp = random(MODULUS);
if (temp < OL) temp = (-temp);
bufier[j] = temp;

printf("Buffer full, iteration %d\n”,i);
quick(0,MAXNUM-1,buffer);

printf("Donc\n");
}
quick(lo,hi,basc)
int lo,hi;
long base[];
{ int i.j;
long pivot, temp;
if (lo < hi) {
for (i=lo, j=hi, pivot=basefhi]; i < j; } {
while (i< j && base[i] < pivot) ++i;
while (j> i && base[j] > pivot) --j;
if (1<) {
temp = base[i);
base[i] = base[j];
base[j] = temp;
}
}
temp = base[i];
basefi] = basclhi];
basc[hi] = temp;
quick(lo, i-1, base);
quick{i-+1, hi, base);
}
}

long random (size)
long size;

seed = (seed®A + C) % size;
return{sced);



/* Moat.c - Floating-point benchmark *

#define CONST1 3.141597E0
#define CONST2 1.783%032E4
#define COUNT 10000

main()
{ double a,b,c;
int i;
a = CONSTIL; -
b = CONST2;
for (i=0;i < COUNT; ++i}{
c=a"b;
c=c/a;
c=a"'b;
c=cla;
c=a"b;
c=c/a;
c=a"bhb;
c=cla;
c=a"b;
¢=c/a;
=a*l
c=c{a;
c=a*h;
c=c/a;
}

printf("Done %A\n",c);
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