
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1983

Implementing a scalar C compiler on the Cyber 205 Implementing a scalar C compiler on the Cyber 205

Kuo-Cheng Li

Herb Schwetman

Report Number:
83-458

Li, Kuo-Cheng and Schwetman, Herb, "Implementing a scalar C compiler on the Cyber 205" (1983).
Department of Computer Science Technical Reports. Paper 377.
https://docs.lib.purdue.edu/cstech/377

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

·.. :. •

ImplemeDtlDg 8 scalar C compiler 00 the Cyber %05t

Kuo..c~ng Li and H~rb Schw~tman

Department of Computer Sciences
Purdue Uni.versity

West Lafayette, IN 479ffl

ABSTRACT

With the aid of the EM (Encoding Machine) Compiler Tool Kit, a prel­
iminary version of a scalar C compiler was implemented on the Cyber 205 in- a
relatively short period of time. This C compiler emphasizes functionality more
than efficiency. Several benchmark programs were used to measure the per­
formance and to compare it with an equivalent C compiler for VAXlUNIX*
system. In order to make i.t a production-quality C compiler, further enhance­
ments will be necessary. This paper presents some motivating factors, imple­
.mentation details, and proposes further work on developing the Cyber 205 C
compiler.

KEY WORDS C Compiler tool kit Cyber 205 EM intermediate code

October 6, 1983

t Thil work WII5 IRlpporlcd ia pan by lbe Purdue Uaivemly Computing Cealer (PUce).*UNIX ill Tudc:ml.rt of Bc:1I La.borl.toric:l.

Implemeotiog a scalar C compiler 00 the Cyber 205

Kuo-Cheng Li and Herb $chwetman

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

1. introduction

A supercomputer, the Cyber 200 Model 205 (hereafter the Cyber 205), was installed at

Purdue Uni...crsity in the spring of 1983. It is the fastest computer in the world; only the

CRAY-I [Russ78] series [Buch83] is B. competitor. Howe...er, as pointed out by Dijkstra, in his

Turing award lecture [Dijk.72], -..41 long aJ there were no machiMs. programminR WaJ no problem

as all; when we had afew weak computers. programming became a mild problem. and now we ha...e

gigantic computers, programming has become an equally gigalllic problem"... In other words,

advances in hardware only create problems for software. Hardware is already fast, but how to

take' advantage of advanced hardware is (he responsibility and challenge of software.

The "new· Cyber 205, although deri...ed from the CDC STAR 100 [HiTa72] and therefore

relaining some of its software, has only a limited amount of software which exploits its

hardware capabilities. In the area of programming languages, there is only one high level

language _ (...ector) FORTRAN. This FORTRAN does not satisfy the demands of all groups of

users, e.g., it is awk.ward when dealing wilh character strings, complex program flow, recur-

sian, etc., and also it provides no aggregate data structures. There are severallanguagcs avail-

able in today's computing world which have a structured syntax and hence can impro...e a

user's productivity and increase a user's satisfaction; these languages are also reasonably

efficient, allowing good utilization of the underlining powerful hardware,

- 2-

There are at least three approaches to the design of high level languages for vcctor (or

parallel) computers:

1. VectoriZalion: an automatic optimizer (e.g., [KKPL81]) which can detect inherent paral­

lelism in a sequential program and generate code for the vector computer,

2. Explicit, veClor-oriented syn/tu added to an u:i:rzing language: syntactic and semantic

enhancements to an existing (scalar) language which allow users to directly specify vector

data types and vector operations, or

3. New vector (or parallel) programming language: design a new programming language

tailored to vector (or parallel) processing; implement a compiler for this language.

We elected to pursue the second allcrnative for several reasons:

1. Various surveys [Weth8D} [PeSt81aJ [PeSt8~b] have shown that vectorization alone is usu­

ally less salisfactory and less efficient for designing and constructing programs; many

users of vector or parallel computers prefer languages with vector or parallel syntax,

2. The vector FORTRAN compiler provided by CDC already ha5 an elaborate vectorizer,

so programmers wishing to use this approach have a means of doing so,

3. We feel the need for a structured language with vector constructs will be an csscnlial

tool to support research into vector algorithms,

4. By extending an existing (familiar) language, users will not need to make an extensive

invcstment in learning a new language; Ihey can build on existing knowledge, and

5. By starting from an existing compiler. a reliable compiler for the extended language

could be constructed more economically (than a brand new compiler).

The programming language C (KeRi78] has become popular as a system implementation

and application language. For many of the reasons eited above we decided to implement C

with veclOr ~xt~lUion.J for the Cyber 205.

· 3 •

Before extending the language C, it was essential to have the existing (scalar) C imple­

mented on the Cybcr 205, so that upward compatibility could be achieved. With the aid of tbe

Amsterdam EM (Encoding Machine) Compiler Kit [TSKS81], II. scalar C compiler was imple­

mented on the Cyber 205. The current version of this C compiler emphasizes funcrionality

more than efficiency. Better performance can be achieved by later refinements, as is demon·

strated in this paper.

This paper describes the implementation of tbis preliminary version of CC205 (C com­

piler for the Cyber 205). In the following sections, the EM Tool Kit, the Cyber 205 system,

and the programming language C are brieRy described. Then, the implementation, problems

and performance issues are presented and discussed.

1. The EM Complier KU

2.1. Rationale

The Encoding Machine (EM) compiler kit is designed and implemented by Tanenbaum

et a1. al the Vcije University, Amsterdam, The Netherlands [TaSSSO]. This Tool Kit is used

mainly for assisling, in the sense of saving programming effort, the construction of (cross)

compilers for different programming languages on different machines. The approach

employed is based on the UNCOL (UNiveral Computer Oriented Language) approach [Stee60]

wilh some restriclions.

The idea of UNCOL is that, for N languages and M machines, it should be necessary to

build only N+M language processors, instead of N·M processors. In olher words, only N

Front-Ends and M Back-Ends are needed (see Figure 1). In Figure I, the Front-Ends accept

source languages and generate intermediate code which is input to the Back-End, and then

targel object programs are generated. However, this idea is probably too ambitious, 60 some

restricli.ons are necessary. The restriction of the EM compiler kit is that only algebraic

lansuagu for byte-addressable machines are considered [TSKS81].

Fl"'ont-End

Language 2 [~~~r---1-----7 FE2

Language n ,---,
-----7

• 4 •

Intermediate
Code

Back-End

BEl ~ct 1

~I BE2 ~Ct2

F
bject m

BEm
--

Figure 1. UNCOL diagram (n Languages and m machines)

2.2. BlIslc building blockll

Figure 2 shows the basic building blocks of the EM Tool Kit which is used in our imple-

mentation of CC205. As seen in Figure 2, the compilation proceeds as a series of translations,

as follows:

tbe source program is translaled into compact EM assembly code by (h'e Froat·End,

the EM assembly code is (optionally) translated by the peephole OPTimizer (0 optimized

EM code.

the EM code is translated by the Back-End into the assembly language program of the

target machine (called META on the Cyber 205),

the assembly language program is assembled into objcci modules by the Cybcr 205 assem·

bier. and

the object code, plus entries from the C library, are made into executable modules by

the Cyber 205 loader.

The Front-End is a modified version of the PCC (Portable C Compiler) [John781

fJohnBO], in which the machine dependent part of PeC has been modified to accommodate the

EM architecture and generate EM intermediate code. The EM intermediate code is similar to

-s-

1*. c (C Source Program)

1*.k (Compact EM Assembly Code)

1*. m (Opt i mi zed EM Code)

VAX 11/780 1*.9 (Target Assembly)
._..--------------------------_.._---_ --.-._-_. __ ._-_._--_ __ _-_..

Cybar 2e5

1*.0 (Object Code)

c:J
r····················l
J !

LOAD (_.....l..__._~~_I_~_ ...J
1a.out <Executable Code)

Figure 2. Basic bui Iding blocks of EM tool kit

P-code [NAJN75], but more general, since it is intended for a wider class of languages (not

just Pascal).

Another advantage of the UNCOL approach is thai only one intermediate code optim·

izer is necessary for all languages and machines. The optimizer in the Tool Kit is a peephole

optimizer which scans the instruclions in a window of a few instructions, replacing specified

- 6 -

code sequences by a semantically equivalent but (hopefully) more efficient ones [TaSS82].

The task of the Back-End is to convert the EM code into the object code (assembly language)

of the target machine; an instruction mapping table from EM code to the target object code is

the basis of this process.

2.3. Macblne arcbllecture

The Encoding Machine [Tanc78] [TaSSSO] [TaSS82J is a simple stack machine; i.ts instruc­

tion set is stack-oriented (i.e. re~'erse Polish type). Fundamental operations include pushing a

variable or constant onto the stack. paping the top of slack, and performi~g arithmetic opera­

tions on the top two slack items. Branching depends on the top one or two stack items, and

the instructions for calling and returning from procedures, cle. also usc the stack. These

slack-oriented instructions were chosen to match closely the semantic primitives of common

algcbraic languagcs. Furthermore, the instruction set is designed to incorporate a highly com­

pact encoding scheme, this encoding scheme is based on results of extensive empirical investi­

gations [Tane78].

The Encoding Machinc has no general purpose registers; it does have a few special pur­

pose rcgislers such as the Local Base register (LB, equivalent to the frame pointer Up) in the

VAX) and the Stack Pointer (SP). General purpose rcgisters are normally used by compiled

code to (1) hold intcrmediate resulrs while computing complicated arithmetic or logical

expressions and (2) hold frequently used local variables. However, several sludies

[Knut71][Tane78] have shown tbat a typical arithmetic expression is not complicated and, in

fact, references, on lhe average, fewer than two operands. In addition, recent emphasis on

structured programming (which advocates the use of many small procedures) means that the

usc of rcgisters to hold local variables could require significant ovcrhcad in lhe prologucs and

epilogues of procedure calls. Thus, the need for general purpose registers is probably not as

great as in earlier situations. Furthermore, reverse Polish code is much easier to generate

than multi-register machine code, especially if highly efficient code is desired. If necessary,

- 7 -

part of tbe top of stack can be kept in a high speed memory (e.g., a cache) to achieve accept­

able performance [Orga73].

2.4. The ImplIct 011 OUI' proJetl

The UNCOL approach dictates that the Tool Kit be bighly modular. Writing one Front­

End for a new language is normally sufficient for implementing that language on several

machines; similarly, writing a Back-End for one machine is normally sufficient for having it be

used by several other languages aD that machine. However, this did not benefit us, since our

intention was to implement onc language aD one machine. Yet, using this Tool Kit did save

us a lot of time and effort, when compared to developing a compiler "from scratch",

The possible problems we imagined at the beginning of this project were:

1. Incompatibility betwun the EM and the target machi~: some EM codes may be mapped

onto expensive target codes, and some target eodes may not be mapped at all. As an

example, the scalar instruetions of Ihe Cyber 20S are register-oriented, which are very

different from the stack-oriented EM instructions. and

2. lnefficiency d~ to the introduction of imermedia/e code: the compilation process is slowed

down because the generation of objecl codes is indirect, i.e. involves Iwo dislinet steps

(EM code and assembly language).

3. The Cyber 205 system

3.1. General history

The Cyber 205 central computer, one of the few existing commercially available super­

compulers. is B. large-scale, high·speed eomputing system. II was first announced in 1980 and

installed at Purdue University in the spring of 1983.

- 8 -

The Cybcr 205 is a descendent of the CDC STAR 100 (1965 - 1975) which had several

problem areas [Hole8!1 including, slow main memory (1200 os access time), slow scalar arith­

metic (four times slower than CDC 7600 and mM 3601195), long vector stan-up times (3 - 7

1L.l"). and unit ·vector increment (vector elements bad to be in contiguous locations). The

Cyber 203 in 1979 overcame the first two problems of tbe STAR 100 by utilizing LSI circuits in

the CPU and bipolar memory, to obtain a 20 os clock period (also called minor cycle) and 80

os memory access time. In 1980, the Cyber 203 was re-engineered to overcome part of the

third disadvantage, Bod its advaneed features. such as stream processing, virtual addressing,

and hardware macroinstructions were improved. Tbis improved machine is designated the

Cyber 205. However, beeause of tbe inherent properties of the machine architecture, the vec­

tor clements stHI nced to be in consecutive memory locations. Nontheless, noncontiguous vec­

tor elemenls can be processed using the scatter/gather and compress/merge instructions.

The Cyber 205 is considered to be the fastest machine in the world, because it has a

maximum processing rate of 400 MFLOPS (Million FLoaling.pollll Operalions Per Second) for

64-bit operations or 800 MFLOPS for 32-bit operations; these asymptotic rates are based on

processing vector data using four arithmetic pipelines and linked triadic operations.

3.2. Machine archllecture

Figure 3 is a simple block diagram of the Cyber 205. It is composed of the CPU, Central

Memory (CM), and the Maintenance Control Unit (MCU). etc. Tbe functional cbaracleristics

of tbe Cyber 205 are briefty deSCribed below; a more detailed description of each functional

block can be found in [CDC81al. The CPU comprises a scalar processor, a veclor procesror

and several I/O ports. Since the current version of the C compiler uses only the scalar instruc­

tions of the Cyber 205, only tbe scalar processor will be described.

The Cyber 205 bas a higb speed register file with 2S6 full-word (64 bits) registers, which

is used for bolding operands and results for scalar instructions, and for instruction and

operand addressing, indexing, and sloring constants and field lengtb counts, etc. There is a 64

- 9 -

Central Processor
Unit

Memory
Interface

l
r····-····........l

~,Vector I
~ IProcessor

L.•.•..•••.........J

- -)rS~;·I~~······l

!Processor I
l__

Syetem
r··················,

~i I/O I
Channel ~l Ports i
Adapter LJ

Central
Memory ~

Maitenance
Control ~
Unit

Figure 3. Cyber 205 Block Diagram

f!.lll-word semiconductor instruction slack for the optimization of programmed scalar loop

iteration.

The scalar processor (see Figure 4) features five independent arithmetic functional units

which are pipelined so as to accept new operands every clock cycle. An exception is the

Divide/Sqrt/Convert unit for which a new operation can not be issued until the completion of

the previous operation; this is the only portion of floating point units which is not pipelined.

The Cyber 205 hardware supports floating point, integer, byte, and bit data types, where float-

ing point and integer variables can be either full-word or half-word in length. A full-word

integer is 48 bits, which is actually a floating point variable with zero exponent.

The Load/Store unit contains six address registers. A load instruction requires one

address register, while a store requires two address registers. Hence, the Load/Store unit is

capable of streaming load/store instructions at one load per minor cycle and one store per two

- 10 -

Vector Processor

Memory ~

Instruction Issue
Stack -> Unit ~

I
Memory Functional

Control

t
Units

T Load/Store Regi ster
) Unit <-> Fi Ie <-----)

Vector Processor

Figure 4. Scalar Processor Block Diagram

minor cycles, except for the STOC instruction - store character, which is one per 14 minor

cycles. Furthermore, the Load/Store unit can load a word rrom central memory into the

register file in 15 minor cycles (300 ns), and store a word into memory in 10 minor cycles.

Therefore, a sequence of N loads can be executed in (N+14) cycles, wh~reas a stream of N

stores can be executed in 2N+8 cycles. These times assume no memory conflicts or rcgistcr-

busy condi.tions. Five minor· cycles may be required to release a register, and a minimum of

four minor cycles to resolve a memory conBict.

The scalar process also has a shorl-slop feature which is the mechanism by which a result

from any arithmetic unit may be used directly as the input to any arithmetic unit. This occurs

in parallel with the storing of the result into the register file (see the timing analysis in Section

6.22). The time saved by short-stop (avoiding the store of the result into the regisler file and

the retrieve of it back. to the next arithmetic unit) is three minor cycles. Utilizing this benefit

is not trivial as the timing constraints are critical. For example, instruclion A, issuing at time

T. generates a result which is to be used by instruction B; instruction B must be issued no

later than T +SS , where SS is the short·stop time; if missed, instruction B can only access the

- 11 -

result from the register file.

The Cyber 205 has a V;rluaJ memory mechanism whose page table is the combination of 16

associative registers and a space table which resides in a restricted area of central memory.

The virtual memory mechanism performs high speed address mappings from the logically con­

tiguous addresses to the physically noncontiguous storage system. The virtual address space is

4 trillion words (addressed by 48 bits); half of the address space is available ~or each user; the

other half is reserved for system usc. Memory can be addressed in full-word, half-word (32

bits). byle (8 bits) and bit units. In the Purdue configuration, the size of physical memory is

one million 64-bit words, which could be extended to two or four million words; the page sizes

are 2048 words (small pages) and 65536 words (large pages).

From a user's point of view, many operations in the Cyber 205 are performed in a serial

fashion, while other operations are performed in a semi-parallel (pipeIined) mode. In fact, all

operations are issued in strict sequence from the Instruction Issue Unit and form a single

instruction stream. Also, since tbe scalar/vector processors operate on multiple data (due to

the multiple functional units and the pipelined segments in each functional unit), tbis machine

can be classified"as a SIMD (Single Instruction .stream, Multiple Dma stream) macbine [F1yn66].

The Cyber 205 is designed primarily for processing tasks wbich require intensive compu­

tations andlor large amounts of main memory. Some LID operations and many other support

functions are left 10 Front-End computeT5 (e.g., CDC 6000's, or DEC VAX's) via the LID ports

and the Loosely Couple Network (LCN). Eaeb VO port is capable of 200 megabits per second

maximum transfer rate; the LCN can sustain a transfer rate of up to SO megabits per second (a

peak. ratc which is rarely achieved). This functional hardware concept of distributive process­

ing is the cornerstone of the Cyber 2DS system architecture.

- 12 -

3.3. Software

The software of the Cyber 205 includes:

a multiprogramming operating system - Cyber 200 VSOS (Virtual Storage Operating Sys·

tom) ICDC81b].

programming languages such as FORTRAN, IMPL (a system implementation language

similar to Fortran) and META (an assembler), and

other utility programs such as LOAD (a link. loader), OLE (Object Library Editor which

is akin to ar in UNIX). etc.

META. the assembler for the Cyber 205 [CDC81cl. generates rclocatable binary output

which is then linked and loaded by LOAD. META provides a conditional assembly capability,

a procedure and function definition capability, B set capability to deline, reference, and

extend the list of expressions, and attribute assignment for symbols, etc. The mapping table in

the EM Back-End is designed to map EM instructions into META assembly c~e.

4. The C programming language

The language C (KeRi781 was created by Dennis Ritchie and developed at Bell Labora­

tories at Murray Hill, New Jersey, in 1972. It was used in rewriting the assembly language vcr­

sion of the UNIX operating system on the DEC PDp-ll (except for a few very low level rou­

tines) so that transporting UNIX to another computer became mainly a matter of writing a C

compiler for the target machinc {MiIl78] [MiTa82]. In spite of its intimate relationship with

UNIX, C has earned a repulation as a good systems programming language and has even been

called a high levd assembly language. It is also a powerful application programming language

(FeGe82); e.g., it has been uscd in movie production (the computer graphics animation in the

nStar Trek. II~ and nReturn of the Jedi- were written in C [Robe83D·

Anolher important characteristic of C is its higb degree of portability. This 15 duo to fact

that its data types and control structurcs are supported directly by most existing computers,

- 13 -

and the low level machine-dependent (e.g., VO) issues can be resolved by usc of run-time

library functions. The Portable C Compiler (PCC) [Jobn80] has made C movable to many

other main frames with different idiosyncrasies, such as the mM system/370, the Honeywell

6000, the Interdata 8/32, the VAX IV780, and many microcomputers [BYTE83].

C has most features common to high level programming languages, features such as

structured ftow-control, recursion, fundamental data types (with structures, and unions), as

well as several unique features. such as bitwise logical operations, increment and decrement

operators, pointer arithmetic, statie variables, register variables, fields, casts, etc. Its funda­

mental data objects are floating point numbers, integers of different sizes, and characters, and

it has derived data types created by using pointers, arrays, structures, unions, and functions.

Efficient manipulation of bits is vital to systems programming. C has this capability

which exists in only a few other high level programming languages. Furthermore, most

hardware instructions deal with machine addresses directly, and C has pointers (which

correspond to machine address) and the capability of doing pointer arithmetic. By virtue of

these capabilities, C is capable of generating efficient code for critical segments and for con­

structing and manipulating efficient data structures.

Argument passing in C is call-by-value; call-hy-referellCe can be achieved by passing the

pointers (or tbe addresses) of data items. C is a typed, but not a strongly-typed, language; this

will be helpful later when implementing the proposed vector extensions [PeCM83].

5. The design and Implementation of CC20S

5.1. PlannlnK

The task of implementing a (scalar) C compiler (designated CC205) on the Cyber 2D5

using the EM Tool Kit was broken into five major stages:

· 14·

1. Imtalllhe EM Tool Kit on our VAX/UNIX rysum: The EM Tool Kit, written in the V7 C

language. was developed on the pop-uno under the Version 7 UNIX operating system.

At our site the C compiler executes on a VAX-l1/780 running the Berkery 4.1bsd UNIX.

This phase of the project required us to become acquainted with the EM Tool Kit (the

EM package is. unfortunately, not well documented) and to tackle some of the machine

dependent problems.

2. Design Q1ld build the Bade-End instrUClion rrJQpping table: This phase of work required

knowledge of the Cyber 205 architecture and its META assembly language. As men­

tioned before, EM is a stack machine and may assume that the target machine has a

hardware stack. [n contrast. the Cyber 205 is register-oriented machine, and it docs not

have a h.ardware stack mechanism (i.e., hardware instructions for automatic manipula­

tion of the stack pointer); therefore, a :software stack is necessary.

3. Design a C :start·up rOlltine and install the C run-time library: A start-up routine was

needed for interfacing the run-lime C program and the Cyber 205 system. The C run­

lime library is a set of modules which is divided into three sub-libraries:

gen - general functions, e.g., 'malloc', a memory allocation funclion,

stdio - standard 110 functions, e.g., 'dopmt', a printing formator, and

sYS"- system functions, e.g., 'read', <Write'. 'creal', 'open', and 'close' etc., low level 110

functions.

Since most of Ihe library roulines are already implemented in C and, also because of Ihe

high portability of C, the main part of this phase consisted mainly of developing the low

level system functions.

4. Bootstrap CC205 to the Cyber 205: Steps I, 2 and 3 led (0 a compiler which executed on

the VAX/UNIX system and produced META code, which could then be uploaded to the

Cyber 205 for assembly, loading and execution. The goal of Ihe bootstrap phase of the

project was to move Ihe compiler itself onto the Cyber 205. Some machine dependent

- 15 -

and portability problems were expected. (Also, this was a good test of the compiler).

5. OptimiZalioll: A straightforward mapping of instructions resulted in a great deal of

redundant code; further optimizations were needed.

5.1. The address Iipac:e and C run-tIme stact

The Cyber 205 has a dynamic space, really a virtual space, lying between the code-data

sections and the public library [CDC81b]; this could be used as the run-time stack required by

procedure calls. A procedure call is expensive for a register-oriented machine. It may be even

more expensive on the Cyber 205 because it may involve a vector instruction (swap) to swap

the caller's environment registers and working registers (see Figure 5 for the register file) at its

prologu,?; similar costs arc incurred on procedure exit (in (he epilogue), and the start-up time

of the vector instruction 'swap' is nontrivial (either 28 or 56 minor cycles).

However, because the EM Tool Kit does not use any general registers, the procedure-call

mechanism in our current C Compiler is different from the conventional one used in the

Cyber 205. On procedure entry the prologue performs the following four actions (see Figure

6):

1. Save the return address,

2. Save the local base (LB),

3. Update LB. and

4. Allocate the space for local variables,

and the epilogue does the revcrse actions, namely, restore LB and return to the caller. These

aclions mean that we must have a C ron-time stack. in the address space.

Figure 7 shows the block. diagram of the address space. The Cyber 205 allows us to

select the interleaved code-data format or tbe separated code-data format; the former format

is Ihe default. As shown in Figure 7, the C run·time stack is positioned in the area between

the code-data segments and the VSOS dynamic stack. The stack pointer (SP) is initialized at

- 16 -

Environment

Registers

Global
Registers

Temporary
Registers

Macbine
Registers

0 lIlacbiDC zero

)I data fiB! bllDcb ail addrc..

2 dall Bag buacb enlry addtcllll

3

)
3

4 20"
5 IA"
6 I

7 parameter dc:s.criptor

8 lunC1ioD URlI! ,cgillel 1

9 funclion raull rcg:i5fcr 2

retlnll IIddrca

dynamic lII.ack pointer

current slack pCliDlcr

prcviOUllllllck poiolcr

liDk rcg.isl:cI

data 8ag lable poiDlcr fOf DFBM

I

I

I

I

I

I

1

IA

m
Ie

10

IE

IF

20

FF

Temporary

.nd
Working
Registers

Flgure S. Register File

some proper location and grows upward, i.e., when pushing a data onto the stack, Sf is

decreased first, then the data is stored. Just below the C run-time stack is the VSOS dynamic

stack which grows downward. It is used for the conventional procedure calls as mentioned

above (the low level system functions in sys need to use conventional calls). A heap, growing

upward against the VSOS dynamic stack, is used by thc C run time storage allocation.

- 17 -

sp-

LB-

local,

)local I

old LB

'el. PC

argo
arg,

arg.

Local variables

Actual parameters

Figure 6. Activation Record for a Procedure Call

5.3. The Inlitrndlon mapplol from EM to META

5.3.1. General

The EM assembly language [TaSSSO] has 12 pseudo instructions for storage declaration,

and procedure indication, etc., and 132 machine instructions including loads. stores, arithmetic

operations, comparisons, branches, and procedure calls. etc. Not all EM instructions are used

in the C language conventions, hence the unused EM instructions are not generated by the C

compiler (notc that EM is designed for many languages, not simply for C).

The Cyber 205 has 214 instructions [CDC81al, including vector. vector macro, and moni-

tor instructions, ctc., and some directives [CDC81cl which are assembler mnemonics. For the

scalar C compiler, only a few instructions were used.

5.3.2. The size speclncalloo& of data types and potenUai portablUty problemll

The sizes of fundamental data types are parameterized in the EM Tool Kit. Table 1

shows the specifications employed in our first version of CCZ05. With these specifications,

several potcntial portability problems (for existing C programs) may be expected, since in our

current environment (VAXlUNIX C). a C program has the specifications shown in Table 2.

- 18 •

Code-Data Segments

C Run-time Stack

VSOS Dynamic Stack

Heap Area

System Use

0

)
Cod,

D.~

•

0 ,
•

,

80000

EFFFFFFB
FOOOOOOOO

7FFFOOOOOOOO

System Use

FFFFFFFFFFFF

Flguu 7. Address Space

Some of these possible portability problems include:

1. size-de{Undem problems: As shown in Table I, 'short' is 64 bits, not 16 bil8 as defined in

Table 2, this may eause data objects to be misintcrpreted. For cxample, a memory word

- 19 -

Size Number of bits

word 64

pointer 64

long 64

int 64

short 64

'h'" 8

80at 64

double 64

Table 1: Version 0 size specifications for CC205.

Size Number of bits

word 32

pointer 32

long 32

int 32

short 16

,h", 8
80at 32

double 64

Table 2: Size specifications for VAX C.

containing OxFFFF in hex (65535 in decimal) is interpreted as -1 in the 16-bit short mode

(i.e., the current VAX C environment) but as 65535 in 64-bit short mode.

2. machint:.dep~nden/ problems: The full-word integer in the Cyber 205 is 48 bits, (not 64

bits as given in the specification); this forms a '1l01e8 (the lefl most 16 bits of a word) in

memory, which is not expected by the EM and the olher C programs. The bit position is

increased from Ish (least significant bit) to msb (most significant bit) in EM, wbile in the

Cyber 205 it is in reverse order.

The first problem can be solved by modifying the programs to do signoUunsion explicitly, and

the second problem may be significant only when tbe existing C programs doing bitwise

- 20 •

operations, such as bitwise AND. OR, SHIFf, etc. This could be solved by modifying the bi.t­

wise operations to fit the new speci6cation. For developing a new program, these should nol

be problems, since users should know the sizes of the data types.

5.3.3. Other cbllrae.terlstlca:

Characters in tbe Cyt:tcr 205 are, fortunately, represented in ASCI[.code. (which is

significantly different from the traditional CDC series of computers in which a character is

represented in 6-bit 'display code', with only the upper-case characters, plus digits, punctua­

tion marks and operators). This makes C programs running on the Cyber 205 more caRven·

tional (i.e. nol forced to use upper-case only). Also bootstrapping the compiler is more

straightforward; however this incompatibility with the older CDC systems complicates the pro­

cedure of building CC205, because the current Front-End computer is a CDC 6600 and all

files have to be stored in binary form on the 6600 before transferring them over to the Cyber

205.

Memory addressing on the Cyber 205 is in bit units, which is different from byte­

oriented machines such as the EM and the VAX. Also the hardware of Cyber 205 docs not

provide for indirect addressing; this can be implemented using additional load (LOD) instruc­

tions.

5.3.4. Global dennltlon, InstroctioD. mapping table and ln5truetioD. macroll

The global definition table, used as an included file for the CC205 generated META pro­

grams, symbolically defines the global registers (e.g., stack registers: SP and LB, constant regis­

ters, etc.) and the scratch regislen. The iIulruction tnQpping table defines blocks of in-line code

without labels, and other blocks are defined elsewhere as instruction macros whieh are sets of

META procedures containing labels.

• 21 •

Because a 50flwar~ stack is employed, each EM instruction is, most of the time, mapped

to at least three META instructions, c.g., an EM instruction LOC c (load constant canto

stack) is mapped as follows:

es tI,e

is sp,-64

lad sp,t!

• entcr register t1 with constant c

• decrease stack pointer by one word (64 bits)

• push (tl) onto the top-ot-stack

5.4. The C start-up routine and low le"el system rUDctlOb!

The C start-up routine, used for entering the C run-time environment, performs several

tasks, including:

1. Initializing the constant regi,sters. the C run-time stack pointer, and the VSOS dynamic

stack pointers,

2. Setting up the command-line arguments (orge,orgv) and handling redirection of [/0 files,

3. Opening the standard input (stdin), output (sldout), and error (stderr) files. and initializ­

ing the file descriptor table which is a table containing the Cyber lOS's file logical unit

numbers (flun) indexed by C's file descriptors (fd). and

4. Jumping to the main routine.

At program termination, the routine exir is called to "Bush out- the VA buffers; control is

then returned to VSOS.

The System Inlerface Language (SIL) ICDC81b] of the Cyber 205 is a set of subroutine

calls which allow a task to exchange information with the operating system and to perform file

YO operations. The low level system functions of C are all implemented in META using SIL

calls. The assembled low level functions with the rest of the (compiled and assembled) C

run-time library are built into an object library (CCLm) using OLE (Object Library Editor).

- 22 •

At the completion of this phase. we bad a cross compiler available at the VAX site, i.e.,

C programs can be compiled on the VAX machine, and then the generated META programs

can be uploaded to the Cyber 205 for assembly. loading, and execution.

5.5. Bootstrapping CC20S

The process of bootstrapping [AhUI77] is shown in Figure 8, where the notation Tl°

means a translator T. written in language S. translates language J into language O. In the

first stage, CC20S& II (written in C, accepts C code and translates it into META code) goes

through ccf v on VAX (CC in VAX machine code accepts C code and produces VAX

machine code) produces a cross compiler (CC205f .11'). Then, in the second stage. as indicated

by the dotted line, CC20S&.II' goes through the cross compiler CC2055 H and produces

CC205~ /fl. That is, the whole EM Tool Kit is processed as i.nput ro the cross compiler, a

META version of CC205 is generated, and then it is assembled and link-loaded as a conlrollee

file rCDC81bl (an execulable file) on the Cyber 205. This completes the bootstrapping process,

and a scalar C compiler is available on the Cyber 205 together with the C run-time library

(CCLIB) and other libraries (e.g., LIBM - math library) and urilities (e.g., EXPAND - expands

tabs inlo spaces).

Ic~~&+-~I ccfY 1-+~~$+·h._+c=nNI
i i
; The second stage !
l -1

Figure 8. Bootstrapping Process

- 23-

6. Performance Issues

6.1. Inherent Inefficiency and possible COrel

The preliminary version of CC205 did not take full advantage of the register file; in fact

only a small portion of the register file was used. Furthermore, as mentioned in Section 2.4,

the possible incompatibility and inefCici.ency (in compilation time) of using the EM Tool Kit,

makes it difficult to compete with the hand crafted Cyber 205 Fortran compiler in terms of

running time of compiled code. To improve the performance of CCZOS, several enhancements

were considered; these possible enhancements included:

1. Remove reduManJ code:

Because of the instruction mapping, the object program generated by CC205 contains

many redundant instructions. For example, aalue (in a register) is pushed (stored)

onto the stack in one EM instruction. and the next EM instruction pops (loads) it out to

the same register. This is a very common phenomenon in the current scbeme of code­

mapping. and, unfortunately. load/store takes much more time to execute than the other

scalar instructions.

2. Keep lOp portion of stack in tM r~gisterfil~:

Keeping the top portion of the stack in the register file could improve performance

significantly. However, META (really the 20S instruction set) does not allow dynamic

addressing of registers (i.e., a register cannot point to another register); it only allows

static addressing of registers (from s.ssembled instruclions). To "build· instructions to

simulate dynamic addressing capability for registers might be possible, but it would prob­

ably be expensive. Also, tbis might incur considerable overhead in tbe Back-End, to

implement a mechanism which manages the portion of the stack efficiently so that when

tbe stack in Ibe register file is full. part of the stack would be swapped into memory;

also when referencing a variable, we need to know whetber it is in the register file or in

- 24-

the memory.

Another plausible approach is as follows: when a procedure call occurs, swap the current

stack in the register file into memory, then do the "prologue' operations and, at the end

of the procedure, do the reverse operations. In this case, the top portion of the slack

(evalul1lion stack) in a procedure is always kept in the register file, and the improvement

over the current method should be significant. The problem here is.that the growth of

the stack in the register file is unpredictable. More precisely, keeping track of the size of

the stack at assembly time or in the Back-End is sometimes impossible, because for some

EM instructions (e.g., LOS, STS, BLS, ASS ,and DUS), the growth or shrinkage of the

stack is runtime dependent. (According to the statistics gathered from 104 CCLm func­

tion modules and the entire EM Tool Kit, these five EM instructions were never gen­

erated; also, the data in Table 6 on the maximum depth of the register stack shows that

excessive register growth is probably unlikely).

3. Maintain all scalar global variables in the register file:

In order to further improve performance, a possible approach is to have all global vari­

ables (scalar variables and pointers to arrays or strings) reside in the register file. In

other words, the preferred programming style would be changed so as 10 favor having

many variables as global variables. This approach has some limitations: first, due to the

limited capacity of the register file, only the first, say 200, global variables can be located

in the registcr file; second, all source files must include a common set of global variable

definitions. However, considering the potential improved performance, this may be

worlhwhile.

4. Force local scalar variables 10 the regisur file:

This approach, though it suffers from the argument that notable overhead may be

incurred during procedure calls [Haik82][BaBK76], may be able to achicva good perfor­

mance most of the time. This approach may require significant modifications of the EM

· 25·

Tool Kit.

6.1. Optl.mlzaUOI1

6.2.1. A peephole optimizer

A META peephole optimizer. implemented as a post-processor to the Back-End, was

added [Ande83]; this optimizer removed some of the redundant META instructions (see

Approach 1 in Section 6.1). Basically, the optimizer performs pattern matching within a basic

block, where a basic block is sequence of instructions delimited by a label, the end-of­

procedure, or the end-oi-file. A window of instructions is matched against target patterns,

where the window size is defined as the length of the longest target pattern. Pattern matching

is done by several finite automata which perform instruction-matching and then operand­

matching. Matched inslruclions are replaced with a replacement pattern and the whole pro­

cess is repeated until no more instructions are matched.

The current META oplimizer removes smaU parts of redundant code; more redundant

code could be removed by adding more target patterns. Pattern matching docs incur heavy

overhead for the whole compilation process, (see lhe compile time data in Table 7).

6.2.2. Back-End Optlmlur'

Based on Approach 2 in Section 6.1, the Back.·End bas been extended to have a register

stack. for the e'Valualion of expressions, i.e. the evaluation .ftack resides in the regisler file,

rather than the normal run-time stack in memory. (We define this version as Version 0.1 of

CC205, and the previous version with straightforward code mapping as Version 0.0). That is,

instead of mapping instructions in tbe straightforward manner (i.e., all intermediate results

stored on the memory Slack), registers are used to hold tbe intermediate results within an

expression. This results in a significant reduction in the number of load and store instructions

(nole tbat loads and stores are expensive instructions in scalar mode). As an example,

- 26-

consider the statement a ==b*c +3, where c is an argument, and a and b arc local variables.

Table 3 shows tbe code generated by EM, Version 0.0 CC20S (CC20So) and Version 0.1 CC20S

(Ce2DS!). In Table 3, to, II, [2, and 13 are scratch registers and c_ln, c_2. c_2n, and c_3 are

constant registers. As shown in the table, six EM instructions were mapped into 25 META

instructions by Version 0.0 CC20S. whereas only five META instructions were generated by

Version 0_1 CC205.

EM CC20Sn Ce2DS COTTJIMnlS

LOL -16 es tl,-2 lad [lb,c_2nJ,tO load b
lad [lb,llJ,12
is sp,-64
sto sp,tZ

LOLO es tl,2 lad [lb,c_ZI,n load e
lad [lb,t1],t2
is sp.-64
sto sp,t2

MUS lod SP,t! mpyx to,n,12 12 = b·c
is sp,64
lad sp,tZ
mpyx fZ ,tI,t3
510 sp,t3

LOC' cs tl,3 load constant 3
is sp,-64
5tO sp,n

ADI8 lad sp.t! addx fZ,c_3,t3 t3=t2+3
is sp,64
lad sp,tZ
addx tZ,t1,t3
sto sp,t3

STL -8 lad sp.tZ sto [lb,c_lnl,t3 slare inlo a
is sp,64
es tl.-l
slo [lb,tll,tZ

Table 3. Instruction mappings ror a = b·c + 3

The timing analyses [CDC82] of these two sels of META instructions are shown in thc

Tables 4 and 5, where the interprelation of each column is shown M follows:

- 27-

Instructions Issued Slack.ed Short-stOD RelZister Memorv

e, n,-z 0 1 ,
[ad [[b,t1],12 1 16
i, sp,-64 2 3 6

". SPllZ 3

e, n,z 5 ". 6 9
16 ". 26

lad [lb,t1],12 17 32

i, sp ..64 18 19 22

". sp,lZ 19

26 ,,. 36
[ad sp,tI 27
i, sp,64 28 lad 29 32

36 lad 51

lad sp,tZ 37 52

mpY" !2,t1,t3 38
52 mpY" 57 60

". sp,t3 53

e, t!,3 55 ". 56 59

i, sp,·64 56 ". 57 60

57 ". 67

". sP,t! 58 68

lad SP,t! 60
i, sp,64 61 lad 62 69

68 l.d 83
lad sp,lZ 69 8'
addx tZ,U,t3 70

84 addx 85 89

". sp,t3 as 9S

lad sp,tZ 87
i, sp,64 88 l.d 89 92
e, U,'! 89 [ad 90 93

95 lad 110

". [[b,l1],12 96
110 ,I. 120

Table 4. Timing analysis (Version 0.0)

1. Issued: the time (in terms of minor cycles) when the instruction is issued,

Z. Slacked: the inslruclion stacked in front of the Floating-Point unit; at most one instruc-

tioo at a time can be stacked,

- 28 -

3. s1wrt-SIQp~ the time when the result is available at the short-stop register,

4. regisur: the time when the result is available at the register file. and

s. menwry: the time when the result is available in memory.

According to these ti.ming analyses. result a is available in memory in 120 minor cycles for the

Vcrsiori 0.0 generated instructions and in 32 minor cycles for the Version 0.1 generated

insfructions. Hence, the executioD time of this statement for the Vernon 0.1 Compiler is

roughly a factor of four shorter than that of Version 0.0 compiler.

The overhead associated with the procedure call is limited in this approach. because the

s:~ralch registers need to be saved only when there is a procedure-call argument, e.g., in a pro-

cedure call P(a. Q(b,c), d), the scratch register, storing variable d. needs to be pushcd onto the

memory stack when procedure Q is called. The activation record is extended as shown in Fig-

ure 9. Also, when branching occurs and the register stack is nonempty, a push/pop bctween

the register slack and memory stack is needed.

Instructions Issued Stacked Short-stoo Register Memorv

lad [lb,c_2n],IO 0 IS

lad [lb,c_21,tl 1 16

mpyx to,tI,t2 2
16 mpyx 21 24

addx t2,e_3,t3 17
21 addx 22 25

st. [lb,tl],12 22 32

Table 5. Timing analysis (Version 0.1)

The static statistics gathered while compiling tbe 104 library routines Bnd Ihe entire

CC205 compiler (which has total o(31 modules) are shown in Table 6. In Table 6. eight

modules have depth zero; this is because they are data files. The average maximum depth of

register stack is 3.4 (excluding the data files).

• 29 •

sp-

LB-

localt

)local t

old LB

ICC. PC

argo
or.,

.,.
regis1ero

register!

Local variables

Actual parameters

Scratch registers

FJ.gu.re 9. Activation record for a procedure call

Maximum Depth Number of Modules

0 8

1 5

2 19

3 SO

4 37

5 10

6 3

7 3

Table 6. Maximum depth of register stack for 135 modules

Obviously, another achievement of this optimization is that a significant amount of pro-

gram space is saved (see for example Table 3).

6.3. Bencbm8l"k. ['PDS

Five benchmark programs were used to compare the preliminary versions of CC205 with

tbe VAX C compiler. Four of them are from [HoBK83]. namely, (1) (he Sieve of Era-

(ostbenes, (2) Floating-point, (3) Sorting, and (4) Fibonacci series benchmarks (see Appendix).

Actually, in [HoBK83J. there are five benchmarks; the fifth one is a disk lile I/O benchmark.

- 30-

Currently, we still have problems with CC20S handling random access files. The fifth bench-

mark is a Queueing Network Model solver - PMVA (Purdue Mean Value Analysis) [SchwBO].

which evaluates several thousand network population configurations.

The compile times (the CPU lime required to generate assembly code) for these bench-

mark programs on the VAX and the Cyber 205 arc shown in the Table 7. where the column

labeled VAX C means the compile time using VAX ee, the columns labeled CEMo. CEM".

and CEM 1 represent the compile times using tbe cross compilers (Version 0.0, Peephole Meta

Optimizer and Version 0.1 respet:tively) running on the VAX 11/780, and the column laheled

cc 205
1

means the compile time using the Version 0.1 C compiler on tbe Cyber 205. From

Table 7. we can see that the overhead (CEM I vs. CEM 0) incurred by optimization is about

13%.

Benchmarks VAX C' CEM6 CEM,! CEM(cc:lllsl

sieve.c 0.9 2.9 61l 33 0.4

sort.c 2.0 7.1 19.9 82 1.6

fibo.c 0.7 2.7 4.6 32 03

float.c 13 2.9 83 33 0.4

pmva.c 31.9 48.1 24SB 51.9 14.1

t compiled on VAX

i compiled on Cybcr 205

Table 7. Compile times (in seconds)

Table 8 shows the execution times of the compiled benchmark programs, where

%improvement means the p~rccntage improvement of the CC2051 generated code over the

CC20So generated code. The long execution time (24.6 seconds) offibo.& on VAX C indicates

that the VAX C is inefficietit for a large number of recursions.

- 31 -

Benchmarks VAX ct CC20sJ CCZOS: CC205/ % improvement-

sieve.c 2~ 1.61 1.00 0.67 58.39

sorl.c 20.9 12.92 8.11 4.61 64.32

fibo.c 24.6 3.60 2.65 2.15 40.28

float.c 1.9 0.37 022 0.18 51.35

pmva.c 15.4 7M 5.04 251 68.06

t executed on VAX

:I: executed on Cyber 205

• (CC 2050 - Ce2DS!) / CC20So
Table 8. Execution times (in seconds)

6.4. Another size speclncatloD

In order to make CC20S more compatible with existing C programs, another set of size

specifications of data types as given in Table 9 was tried. However, this version of CC20S

turned out to be about twice as slow as the previous one. because it caused more instructions

to be generated. To see this, when accessing a local 'int' variable using the previous size

specifications, only one EM instruction is generated (e,g,. LOL -8. load local variable), but

using the later specifications, two EM instructions are produced (e.g., LAL -4 and LOI 4, i.e.,

load address of the local variable then load indirect of four bytes).

Size Number of bits

word 64

pointer 64

long 64

int 32

short 16

ch", 8

Soat 64

double 64

Table 9: Alternative size specifications.

The later version (with specifications from Table 9) has advantages for space-saving and

• 32 •

portability. but its disadvantage is poor performance. Since space is not a critical issue on the

Cyber 205, and, based on the experience of bootstrapping CC20S, portability is not a serious

problem (see Section 532), we have retained the previous size specificatioD.

7. Summary and Futore Work

The EM Tool Kit has allowed us to construct a C compiler for a new machine (the

Cyber 205) in a relatively short period of time (about four man months). The cost of using

this approach lies in the (relatively) inefficient compiler and compiled code. Our initial

experience indicates that application of successive optimization steps can lead to acceptable

performance.

The project has several research goals, which will be pursued as the scalar C compiler

becomes stable. One goal is the development of instrumentation in the compiler and in the

generatcd code. Tbis instrumentation will be used to assess tbe effects of tbe various attempts

at performance improvements.

Tbe otber major goal is the introduction of extensions to the C language which can

allow programmers exploit the vector features of the Cyber 205. The supeNpeeds of the

Cyber 205 are realized only when problems can be formulated in terms of vectors and vector

processing. We feel tbat C is especially well-suited to the introdu.ction of vector (and sub­

vector) data types and vector operations.

Our plan tben can be summarized in tbree steps:

1. Implement stable scalar version of the CC205 compiler,

2. Modify tbe compiler to provide inslrumentation for measuring performance of the com­

piler and the compiled code, Bnd

3. Extend the CC205 compiler to add vector data types and veclor operations.

Once the instrumented compiler with vector extension becomes available, a variety of

research questions can be addressed. Among these, we include:

IAhUl77]

[Ande83]

- 33 -

1. What are the benefits of vectorization?

2. How can scalar algorithms be converted to their vector analoges? can this be

automated?

3. How .can stack-oriented language4 be efficiently implemented on machines without

stacks?

We feel that our approach. vector-oriented extensions to an existing structured scalar

language (together with an instrumented compiler). will allow us to engage in fruitful,

scientific research on these and other topics. The fact that we can easily alter the compiler

means that many approaches can be tried.

8. Ackaowledgments

This project bas received valuable assistance and support from many people. Saul

Roson, Director of puce, has provided ideas and support from the beginning. Dale Talcott

and Ken Adams, of the staff of puce, and John Jackson of CDC, have expended many hours

helping with the Cyber 205 parr of the project. The students in CS590, Jim Anderson, Steve

Englestad and Jerry Gross, spenl the summer of 1983 working on the peephole optimizer and

moving CCLIB to the Cybet 205.

9. Rererenc=es

A.V. Aho and J.D. Ullman, Principles of Compiler Design. Addison-Wesley. 1977.

J. Anderson ~Design and Implementation of a META Peephole Optimizc.r,~ work

nores, July 1983.

[BaBK76] PA.. Batson, E.R. Brundage, and PJ. Keams, "Design Dara for Algol-60

Machincs,~ ACM SIGARCH. January 1976.

[Buch83] I.Y. Bucher, ~The Computational Speed of Supercomputers," ACM SlGMETRlCS

Confereru:e on Measuremenr and Modeling of CompuJer Systems, August 1983.

[BYTE83] BYTE (the small systems journal), Vol 8., No.8, August 1983.

(CDC81a] ~CDC CYBER 205 Hardware Reference Manual.~ COn/roJ DaJa Corporation. 1981.

-)4-

(CDC81b] wCDC VSOS Version 2 Reference Manual, Volume 1 and 2," COn/rot Dala Cor·

pOTation, 198!.

[CDC81c] "CDC CYBER 200 Assembler Version 2 Reference Manual," COnlrol Data Cor­

poration. 1981.

[eDe82] "Enginerring Specification," COn/Tol Dt1Ja Corpormion, No. 10358026, September

1982.

[Dij~72J

[FoGo82)

[Flyn66]

E.W. Dijkstra, "The Humble Programmer," Comm. ACM. October 1972.

A.R. Feuer and N.H. Gehani. "A Comparison of the Programming Language C

and Pascal," ACM Computing Surveys. March 1982.

MJ. Rynn , "Very High-Speed Computing Systems," Proc. of IEEE, Vol. 54,

December 1966.

[Haik82J IJ. Haikala, "More Design Data for Stack Architectures,'" Proceedings of the ACM

'82 Confeunct!. October 1982.

[HiTa72] R.O. Hintz and D.P. Tate, "Control Data STAR-tOO Processor Design," COMP­

CON'72 Digt!$l, pl-4, 1972.

[HoBK83] J. Houston, J. Brodirck. and L. Kent, "'Comparing C Compilers for CP/M-86."

BYTE, Augusl 1983.

[HoJeSl] R.W. Hackney and C.R. Jesshope. Parallel CompuJers, Adam Higer Ltd. Bristol.

1981.

[John78] S.C. JohnsonA Portable Compiler: Theory and Practice.... Prot:. oJ 1M 5th ACM

Symposium on Principles of Programming Languages, January. 1978.

[John80] S.C. Johnson, "'A Tour through the Portable C Compiler.... UNIX Programming

Manual. V.C. Berkeley, 1980.

(KeRi78] B.W. Kernighan and D.M. Ritchie, "The C Programming Language,'" Prentice-Hall.

Inc. 1978.

IKKPL81] D. Kuck. R. Kuhn, D. Padua. B. Leasure. and M. Wolfe. "Dependence Graphs and

Compiler Optimizations: Proc:. of lhe 8th ACM Symposium on Principles of Pro­

gramming Languages. January 1981.

[Knut71] DE. Knuth "An Empirical Study of Fortran Programs," Software-Prtu:lit:e and

Experience. January 1971.

[MiIl78]

[MiT.82]

[NAJN75]

R. Miller. "UNIX· A Porlable Operating System?" ACM SlGOPS. July 1978.

C.H. Minchew and K.C. Tai "Experience with Porting the Portable C Compiler,"

Proceedings of the ACM '8Z Conference. October 1982.

K.V. Nori. V. Ammann. K. Jensen. and H. Nageli. "The Pascal P Compiler Imple­

mentation Notes," Eijgen. Tech. Hochschule, Zurich. 1975.

["'g.,3J

[PeCM83J

[PeSt81a]

[PeSIBlbJ

[RobeB3]

[S<bwBO]

- 3S -

E. Organick. "Computer S)'stems Organization, the B57OO/B6700 Series." Academic

Press, New York, 1973.

R.H. Perron, D. CraDles, and P. MilIign, "The Programming Language ACTUS,"

Software.Practice and E:%perieru:t!, Vol. 13, p305-322, 1983.

R.H. Perrott and D.K. Stevenson, ·Users' Experiences with the ILLIAC IV System

and its Programming Languages," SIGPLAN Notices, July 1981.

R.H. Perrott and D.K. Stevenson, "Consideration for the Design of Army Process­

ing Languages," SoflWare-Pr~tjct!and E;(~rit!ru::t!. November 1981.

B. Roberts, "The C Language," BYTE, August 1983.

H. Schwetman, ·Implementing the Mean Value Analysis Algorithm for the Solu­

tion of Queueing Network Models: CSD-TR-555. C S. Dept .• Purdta Uniy., October

1980.

[Stce60] To8. Steel, "UNCOL: tbe Myth and the Fact." Ann. Re'll. Auto. Prog. R. Goodman,

(ed.) Vol 2. 1960.

[Tane78] AS. Tanenbaum, "Implications of Structured Programming for Machine Architec·

lure," Comm. ACM 21. March 1978.

[TaSSSOJ AS. Tanenbaum, H. Staveren, and l.W. Stevenson, "Description of an Experimen­

tal Machine Architecture for Use wi.th Block. Structureed Languages," In[or11lQlica

Rapport 54. Vrije Uni'llersity. Amsterdam, 1980.

[TaSSS2] AS. Tanenbaum, H. Staveren. and l.W. Stevenson, "Using Peephole Optimization

on Intermediate Code," ACM Traru. on Programming Languages and Systems. Janu­

ary, 1982.

[TSKS81] AS. Tanenbaum, H. Staveren, E.G. Keizere, end J.W. Stevenson, "A Practical

Tool Kit for Making Portable Compilers: Dept. of Math. and Computer Science,

Vrije Uni'llersiry. Amsterdam. 1981.

[Werh80] C. Wetherell. "Design Consideration for Array Processing Languages," Software­
Practice and Experieilu. April 1980.

10. Appendix - Listing of benchmark progl"alDl

,. sleve.c - Eratosthenes Sieve Prime Number Program "

#define truc 1
#define false 0
#define size 8190

char f1ags[size+ 1J;
MainO
{ int i,prime,k,eount,i1er;

printfnO jtcrarioDS\n"};
for (iter = 1; iter < =10; iter++) {

-36-

count = 0;
for (i = 0; i < = size; i++) f1ags[i] = true;
for (i = 0; i < = size; i++) {

if (6'&,[i]) {
prime"" i+ i+ 3;
for (k = i+prime; k< =size; k+= prime)

fiags[k] = false;
count++;
}

}
}
printf('\.n%d prim~n·.counl);

}

,- nbo.c - The Fibonacci series benchmark .,

#include ·STOIa"
#define NTIMES 10
#dcfine NUMBER 24
MainO
(int i;

unsigned value, fibO:
printfr%d iterations:" ,NTlMES);
for (i=l; i < =NTlMES; i++) value = fib(NUMBER);
printWfibonacci(%d) = %u \n", NUMBER, value);
oxi'(O);

}

unsigned fib(x)
int x;
{

if(x>2)
return(fib(x-l) + fib(x-2»;

01",

return(l);
}

/. sort.c - Quicksort benchmark -,

#include 'STOIa"

#define MAXNUM 1000
#define COUNT 10
#define MODULUS ((long) Ox20000)
#define C 13849L
#define A 173L

long seed = 7L;
long buffer [MAXNUM} = {OJ;

- Y1 -

long random();

mainO
{ int i,j;

long temp;

pcintf("FilIing array and sorting %d time~n·.COUNT);

for (i=O; i< COUNT; ++i) {
for (j=O; j < MAXNUM; ++j) {

temp = random(MODULUS);
if (tcmp < OL) temp = (-temp);
buffer[j) = tcmp;
}

printf("Buffer full. iteration %d\o-,i);
quick(O,MAXNUM-l.buffer)j
}

print WDonc\ n");
}

quick(lo,hi,basc)
iot IO,hi;
long basen:
{ inl i.j;

long pivot, temp;

if (10 < hi) {
for (i=lo, j=hi, pivot=base[hi): i < j;) {

while (i< j && base[i] < pivot) ++i:
while (j> i && base[j] > pivot) ._j;
if(i<j)(

temp = base[i);
baseli) ~ base[j);
base[j] = temp;

)
}
temp = base[iJ;
basefi] = basc[hi];
basc[hi] = tcmp;
quick(lo, i-I, base);
quick(i+l, hi, base);

}
}

long random (size)
long size;
{

seed = (seed·A + C) % sizc;
rcturn(seed);

}

/- noat.e - Floating-point benchmark -,

#define CONSTl 3.14IS97EO
#define CONST2 1.7839032E4
#define COUNT ooסס1

MainO
{ double a,b,c;

int i;

a = CONST1;
b = CONST2;
for (i=O; i < COUNT; ++i) (

c=a-b;
c = c f a;
c=a-b;
c = c I a". ,
c = a • b;
c = c I a;
c = a • h;
c = c I a;
c=a-b;
c = c I 8j

c=a-b;
c = c I a;
c = a • b;
e = c I a;
J

printWDone %f\n",c);
}

- 38-

	Implementing a scalar C compiler on the Cyber 205
	Report Number:
	

	tmp.1307986960.pdf.euGDa

