

C H A P T E R 1

1

Introduction to Interapplication C
om

m
unication

Introduction to Interapplication Communication 1

This chapter describes the interapplication communication (IAC) architecture for
Macintosh computers, summarizes how your application can take advantage of it, and
tells you where in this book to find the information you need to perform specific tasks.

The Apple Event Manager, Event Manager, and Program-to-Program Communications
(PPC) Toolbox underlie all the IAC tasks your application can perform. This chapter
introduces the Apple Event Manager and the Program-to-Program Communications
Toolbox. For information about the Event Manager, see Inside Macintosh: Macintosh
Toolbox Essentials. For definitions of the standard Apple events available for use by all
applications, see the Apple Event Registry: Standard Suites.

The IAC architecture includes the Open Scripting Architecture (OSA). The OSA provides
a mechanism that allows users to control multiple applications by means of scripts, or
sets of instructions, written in a variety of scripting languages. Each scripting language
has a corresponding scripting component that is managed by the Component Manager.
When a user executes a script, the scripting component sends Apple events to one or
more applications to perform the actions the script describes.

This chapter introduces the OSA and describes how to make your application scriptable,
or capable of responding to Apple events sent to it by a scripting component.
For more information about using the Component Manager, see Inside Macintosh:
More Macintosh Toolbox.

Overview of Interapplication Communication 1

The interapplication communication (IAC) architecture provides a standard and
extensible mechanism for communication among Macintosh applications. The IAC
architecture makes it possible for your application to

■ provide automated copy and paste operations between your application and other
applications

■ be manipulated by means of scripts

■ send and respond to Apple events

■ send and respond to high-level events other than Apple events

■ read and write blocks of data between applications

The chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials describes
how your application can use Event Manager routines to send and respond to high-level
events. High-level events need not adhere to any specific protocol, so their interpretation
is defined by each application that sends or receives them.

The most important requirement for high-level communication among all applications is
a common vocabulary of events. To provide such a standard, Apple Computer, Inc., has
defined a protocol called the Apple Event Interprocess Messaging Protocol (AEIMP).
High-level events that conform to this protocol are called Apple events.
Overview of Interapplication Communication 1-3

C H A P T E R 1

Introduction to Interapplication Communication

The vocabulary of publicly available Apple events is published in the Apple Event
Registry: Standard Suites, which defines the standard Apple events that developers and
Apple have worked out for use by all applications. To ensure that your application can
communicate at a high level with other applications that support Apple events now and
in the future, you should support the standard Apple events that are appropriate for
your application.

Effective IAC requires close cooperation among applications at several levels. In addition
to the format for high-level events and the standard vocabulary of Apple events, Apple
has defined several other standards your application can use to communicate with other
applications. These include standard methods for dealing with shared dynamic data,
scripts, and low-level message blocks.

The IAC architecture comprises the following parts:

■ The Edition Manager allows applications to automate copy and paste operations
between applications, so that data can be shared dynamically.

■ The Open Scripting Architecture (OSA) provides a standard mechanism, based on
the Apple Event Manager, that allows users to control multiple applications by means
of scripts written in a variety of scripting languages.

■ The Apple Event Manager allows applications to send and respond to Apple events.

■ The Event Manager allows applications to send and respond to high-level events
other than Apple events.

■ The Program-to-Program Communications (PPC) Toolbox allows applications to
exchange blocks of data with each other by reading and writing low-level message
blocks. It also provides a standard user interface that allows a user working in one
application to select another application with which to exchange data.

Figure 1-1 shows the primary relationships among these parts. The managers and
components toward the top of the figure rely on the managers beneath them. The Edition
Manager uses the services of the Apple Event Manager to support dynamic data sharing.
Scripting components manipulate and execute scripts with the aid of the Apple Event
Manager. The Apple Event Manager in turn relies on the Event Manager to send Apple
events as high-level events, and the Event Manager uses the services of the PPC Toolbox.

Figure 1-1 also shows the five principal means of communication provided by the IAC
architecture. In addition to using the Edition Manager and scripting components to send
Apple events on their behalf, applications can use the Apple Event Manager directly to
send Apple events to other applications. All applications can use the Apple Event
Manager to respond appropriately to Apple events, whether they are sent by the
Edition Manager, a scripting component, or other applications. Applications can
also use the Event Manager directly to send or receive high-level events other than
Apple events, and the PPC Toolbox directly to send or receive blocks of data.
1-4 Overview of Interapplication Communication

C H A P T E R 1

Introduction to Interapplication Communication

1

Introduction to Interapplication C
om

m
unication

Figure 1-1 Principal methods of communication between applications

The five forms of IAC shown in Figure 1-1 can be summarized as follows:

■ Sharing dynamic data. The Edition Manager allows users to copy data from one
application’s document to another application’s document, updating information
automatically when the data in the original document changes. The verbs publish and
subscribe describe this form of dynamic data sharing, and the noun edition describes a
copy of the data to be shared. Applications that support dynamic data sharing must
implement the Create Publisher and Subscribe To menu commands. The Edition
Manager provides the interface that allows applications to share editions.
You can let users publish and subscribe on a local volume or across a network. In
general, users should be able to publish or subscribe to anything that they can copy or
paste. “Sharing Data Among Applications,” which begins on page 1-6, describes how
you can use the publish and subscribe features in your application.

■ Scripting. The OSA includes the Apple Event Manager, the Apple events defined by
the Apple Event Registry: Standard Suites, and the routines supported by scripting
components, which applications can use via the Component Manager to execute
scripts. Script-editing applications such as Script Editor (not shown in Figure 1-1)
allow users to manipulate and execute scripts.
Each scripting language has a corresponding scripting component that can execute
scripts written in that language. Scripting components typically implement a
text-based scripting language based on Apple events. For example, the AppleScript
component implements AppleScript, the standard user scripting language defined by

Apple

events

High-level

events

Low-level

message

blocksEdition Script

Event Manager

PPC Toolbox

Scripting

componentEdition Manager

Apple Event Manager
Overview of Interapplication Communication 1-5

C H A P T E R 1

Introduction to Interapplication Communication

Apple Computer, Inc. When the AppleScript component executes a script, it performs
the actions described in the script, including sending Apple events to applications
when necessary.
“Supporting AppleScript and Other Scripting Languages,” which begins on page 1-13,
describes how the OSA makes it possible for your application to
n provide human-language equivalents to Apple event codes so that scripting

components can send your application the appropriate Apple events during script
execution

n allow users to record their actions in the form of a script
n manipulate and execute scripts

■ Sending and responding to Apple events. Your application can send Apple events directly
to other applications to request services or information or to provide information. To
support AppleScript and most other scripting languages based on the OSA, your
application must be able to respond to Apple events. “Sending and Responding to
Apple Events,” which begins on page 1-9, describes how applications can send and
respond to Apple events with the aid of the Apple Event Manager.

■ Sending and responding to other high-level events. The Event Manager allows applications
to support high-level events other than Apple events. See the chapter “Event
Manager” in Inside Macintosh: Macintosh Toolbox Essentials for information about
high-level events.

■ Exchanging message blocks. The PPC Toolbox allows applications to exchange blocks of
data with each other by reading and writing low-level message blocks. This method of
communication is most useful for applications that are closely integrated, specifically
designed to work together, or dependent on each other for information. It can also be
used in code that is not event-based. See “Exchanging Message Blocks” on page 1-22
for a summary of the capabilities provided by the PPC Toolbox.

All forms of IAC are based on the premise that applications cooperate with each other.
Both the application sending a high-level event or low-level message block and the
application receiving it must agree on the protocol for communication. You can ensure
effective high-level communication between your application and other Macintosh
applications by supporting the standard Apple events defined in the Apple Event
Registry: Standard Suites.

Sharing Data Among Applications 1

All Macintosh applications can use the Scrap Manager to share static data by
allowing the user to copy and paste data between documents. Dynamic data sharing, or
automated copy and paste operations between applications, extends this capability to
dynamically changing data. The Edition Manager lets applications share dynamic data at
the user’s request. You incorporate publish and subscribe capabilities in your application
much as you incorporate copy and paste capabilities.
1-6 Sharing Data Among Applications

C H A P T E R 1

Introduction to Interapplication Communication

1

Introduction to Interapplication C
om

m
unication

A user can publish data by selecting a portion of text, graphics, or other data in a
document and choosing Create Publisher from the Edit menu. In response, your
application saves the selected information in a separate file. This stored information is
referred to as an edition. The user can subscribe to an edition by choosing Subscribe To
from the Edit menu; when the user selects a file that contains an edition, your
application includes the information from the edition in the current document. The
information in an edition can be shared by many documents.

Figure 1-2 shows the principal relationships among the Edition Manager, the publishing
application, the subscribing application, and the file that contains the edition. In addition
to the relationships illustrated in the figure, the Edition Manager uses the Apple Event
Manager to communicate with applications that are sharing dynamic data.

Figure 1-2 Sharing data with the aid of the Edition Manager

A publisher is a portion of a document that is made available to other documents
through an edition. A subscriber is a portion of a document that reads the information
from an edition.

Figure 1-3 shows a document containing a publisher, a file containing an edition, and a
document containing a subscriber. The bottom fish in the Fishes of the World document
is a publisher. The information from this publisher is made available to other documents
through the Illustration edition. The Aquarium poster document contains a subscriber
that gets its information from the Illustration edition. Note that when a user selects a
publisher or subscriber within a document, your application should display a border
surrounding the publisher or subscriber.

In general, when a user modifies the contents of a publisher and saves the document,
your application should write the new data to the edition. The Edition Manager then
uses the Apple Event Manager to inform all open applications with subscribers to the
edition that it has been updated. These applications can then automatically update the
subscribers in the documents.

Edition

Edition Manager

Publishing

application

Subscribing

application
Sharing Data Among Applications 1-7

C H A P T E R 1

Introduction to Interapplication Communication

Figure 1-3 A publisher, an edition, and a subscriber

For example, suppose the user changes the color of the fish in the Fishes of the World
document shown in Figure 1-3, then saves the document. This automatically changes the
Illustration edition, and the subscribing application can update the Aquarium poster
document if that’s what the user wants to do.

Figure 1-4 shows how a user might create a poster from information contained in other
documents.

Figure 1-4 Sharing dynamic data with other applications

Aquarium poster

The sjdh akjdh ajdh

cvxjs dkjxl. IN jhchc

ashdjh hxcgjhc zjxc.

Thanks to jvh znxcjk

xcjchz zhgc. Hjf zxc

zjhc zjc zkjckjz zl

xhajhdjhk djfuw dj

G ahjcx zkjais.

The sjdh akjdh

cvxjs dkjxl. IN jhchc

ashdjh hxcgjhc zjxc.

Thanks to jvh znxcjk

xcjchz zh.

zjhc zjc zkjckjz zl

xhajhdjhk djfuw

G ahjcx zkjais.

The sjdh akjdh ajdh

cvxjs dkjxl. IN j

ashdjh hxcgjhc zjxc.

Thanks to jvh znx

xcjchz zhgc. Hjf

zjhc zjc zkjckjz zl

xhajhdjhk djf

G ahjcx zkjais.

E X P E R I E N C E

The AquariumFishes of the

World

Illustration

Illustration

Aquarium poster

Title text

Text for poster

The sjdh akjdh ajdh

cvxjs dkjxl. IN jhchc

ashdjh hxcgjhc zjxc.

Thanks to jvh znxcjk

xcjchz zhgc. Hjf zxc

zjhc zjc zkjckjz zl

xhajhdjhk djfuw dj

G ahjcx zkjais.

The sjdh akjdh

cvxjs dkjxl. IN jhchc

ashdjh hxcgjhc zjxc.

Thanks to jvh znxcjk

xcjchz zh.

zjhc zjc zkjckjz zl

xhajhdjhk djfuw

G ahjcx zkjais.

The sjdh akjdh ajdh

cvxjs dkjxl. IN j

ashdjh hxcgjhc zjxc.

Thanks to jvh znx

xcjchz zhgc. Hjf

zjhc zjc zkjckjz zl

xhajhdjhk djf

G ahjcx zkjais.

E X P E R I E N C E

The Aquarium

The sjdh akjdh ajdh

cvxjs dkjxl. IN jhchc

ashdjh hxcgjhc zjxc.

Thanks to jvh znxcjk

xcjchz zhgc. Hjf zxc

zjhc zjc zkjckjz zl

xhajhdjhk djfuw dj

G ahjcx zkjais.

The sjdh akjdh

cvxjs dkjxl. IN jhchc

ashdjh hxcgjhc zjxc.

Thanks to jvh znxcjk

xcjchz zh.

zjhc zjc zkjckjz zl

xhajhdjhk djfuw

G ahjcx zkjais.

The sjdh akjdh ajdh

cvxjs dkjxl. IN j

ashdjh hxcgjhc zjxc.

Thanks to jvh znx

xcjchz zhgc. Hjf

zjhc zjc zkjckjz zl

xhajhdjhk djf

G ahjcx zkjais.

E X P E R I E N C E

The Aquarium
1-8 Sharing Data Among Applications

C H A P T E R 1

Introduction to Interapplication Communication

1

Introduction to Interapplication C
om

m
unication

Your application should save the new information in the edition whenever the user edits
the publisher and saves the document that contains the publisher—unless the user has
indicated that the information should be saved in the edition on request only. When the
user saves new information in an edition, the Edition Manager replaces the previous
contents.

When an edition is updated, the Edition Manager informs your application. Your
application should then update any subscribers (unless the user has indicated that
updates should be incorporated on request only).

For example, suppose a user opens a word-processing document called My Stocks that
accesses information from an edition called Stock Report. The Stock Report edition
might be updated twice a day by an online database. As the information in the edition
changes, the My Stocks document can receive automatic updates with the latest
information.

You can implement publish and subscribe capabilities in your application by using the
routines provided by the Edition Manager and supporting the related Apple events. The
chapter “Edition Manager” in this book provides sample code that shows how to add
these features to your application. The chapter “Responding to Apple Events” in this
book describes how to support the related Apple events.

Sending and Responding to Apple Events 1

An Apple event is a high-level event that conforms to the Apple Event Interprocess
Messaging Protocol. The Apple Event Manager uses the Event Manager to send Apple
events between applications on the same computer or between applications on remote
computers.

Applications typically use Apple events to request services and information from
other applications or to provide services and information in response to such requests.
For example, any application can use the Get Data Apple event to request that your
application locate and return a particular set of data, such as a table. If your application
supports the Get Data event, it should be able to recognize the event and respond by
locating the requested data and returning a copy of the data to the application that
requested it.

Communication between two applications that support Apple events is initiated by a
client application, which sends an Apple event to request a service or information. For
example, a client application might request services such as printing specific files,
checking the spelling of a list of words, or performing a numeric calculation; or it might
request information, such as one customer’s address or a list of names and addresses of
all customers living in Ohio. The application providing the service or the requested
information is called a server application. The client and server applications can reside
on the same local computer or on remote computers connected to a network.
Sending and Responding to Apple Events 1-9

C H A P T E R 1

Introduction to Interapplication Communication

Figure 1-5 shows the relationships among a client application, the Apple Event Manager,
and a server application. The client application uses Apple Event Manager routines to
create and send the Apple event, and the server application uses Apple Event Manager
routines to interpret the Apple event and respond appropriately. If the client application
so requests, the server application adds information to a reply Apple event that the
Apple Event Manager returns to the client application.

Figure 1-5 Sending and responding to Apple events with the aid of the Apple Event Manager

If an Apple event is one of the standard events defined in the Apple Event Registry:
Standard Suites, the client application can construct the event and the server application
can interpret it according to the standard definition for that event. To ensure that your
application can respond to Apple events sent by other applications, you should support
the standard Apple events that are appropriate for your application.

Standard Apple Events 1
The current edition of Apple Event Registry: Standard Suites defines the standard suites of
Apple events, which are groups of related events that are usually implemented together.
The Apple Event Registrar maintains the Apple Event Registry: Standard Suites and other
information about the ongoing development of Apple event suites.

The standard suites include the following:

■ The Required suite consists of the four Apple events that the Finder sends to
applications. These events are Open Application, Open Documents, Print Documents,
and Quit Application. The Finder uses the required events as part of the mechanisms
in System 7 and later versions for launching and terminating applications. To support
System 7, your application must support the required Apple events as described in
the chapter “Responding to Apple Events” in this book.

Apple Event Manager

Client

application

Server

application

Apple

event

Reply

Apple

event (if

requested)
1-10 Sending and Responding to Apple Events

C H A P T E R 1

Introduction to Interapplication Communication

1

Introduction to Interapplication C
om

m
unication

■ The Core suite consists of the basic Apple events, including Get Data, Set Data, Move,
Delete, and Save, that nearly all applications use to communicate. You should support
the Apple events in the Core suite that make sense for your application.

■ A functional-area suite consists of a group of Apple events that support a related
functional area. Functional-area suites include the Text suite and the Database suite.
You can decide which functional-area suites to support according to which features
your application provides. For example, most word-processing applications should
support the Text suite, and most database applications should support the
Database suite.

You do not need to implement all Apple events at once. You should begin by supporting
the required Apple events, then add support for the events sent by the Edition Manager,
the core events, and the functional-area events as appropriate for your application.

If necessary, you can extend the definitions of the standard Apple events to suit
specific capabilities of your application. You can also define your own custom
Apple events. However, only those applications that choose to support your
custom Apple events explicitly will be able to make use of them. If all applications
communicated solely by means of custom Apple events, every application would have
to support all other applications’ custom events. Instead of creating custom Apple
events, try to use the standard Apple events and extend their definitions as necessary.

Apple events describe actions to be performed by the applications that receive them. In
addition to a vocabulary of actions, or “verbs,” effective communication between
applications requires a method of referring to windows, data (such as words or graphic
elements), files, folders, volumes, zones, and other items on which actions can be
performed. The Apple Event Manager provides a method for specifying structured
names, or “noun phrases,” that applications can use to describe the objects on which
Apple events act.

The Apple Event Registry: Standard Suites includes definitions for Apple event object
classes, which are simply names for objects that can be acted upon by each kind of
Apple event. Applications use these definitions and Apple Event Manager routines to
create complex descriptions of almost any discrete item in another application or its
documents. For example, an application could use Apple Event Manager routines and
standard object class definitions to construct a Get Data event that requests “the most
recent invoice to John Chapman in the Invoices database on the Archives server in the
Accounting zone” and send the event to the appropriate application across the network.

An Apple event object is any item supported by an application, such as a word,
paragraph, shape, or document, that can be described in an Apple event. In the example
just given, the specified invoice, the Invoices database, the Archives server, and the
Accounting zone are nested Apple event objects. Nearly any item that a user can
differentiate and manipulate on a Macintosh computer can be described as an Apple
event object of a specified object class nested within other Apple event objects. When
handling an Apple event that includes such a description, an application must locate the
specified Apple event object and perform the requested action on it.
Sending and Responding to Apple Events 1-11

C H A P T E R 1

Introduction to Interapplication Communication

Most of the standard Apple events defined in the Apple Event Registry: Standard Suites
require your application to recognize specific Apple event object classes. Support for the
standard Apple events, including Apple event object classes, allows your application to
respond to requests for services or information from any other application or process.

Handling Apple Events 1
Figure 1-6 shows a common Apple event from the Core suite, the Set Data event. The
SurfDB application is the client; it sends a Set Data event to the SurfCharter application.
This event requests that SurfCharter use some new sales figures generated by SurfDB to
update the data for the chart named “Summary of Sales” in the document named “Sales
Chart.” The Apple event contains information that identifies an action—setting data—
and a description of the Apple event object on which to perform the action—“the chart
named Summary of Sales in the document named Sales Report.” The Apple event also
includes the new data for the chart.

Figure 1-6 A Set Data event

To respond appropriately, the SurfCharter application in Figure 1-6 can use the
Apple Event Manager to determine what kind of Apple event has been sent and pass
the event to the appropriate Apple event handler. An Apple event handler is an
application-defined function that extracts pertinent data from an Apple event, performs
the requested action, and returns a result. In this case, the Set Data event handler must
locate an Apple event object—that is, the specified chart in the specified document—and
change the data displayed in the chart as requested.

Client

application

Chart of sales

by product area:

300

788

Sales Chart

500 825

Summary of

Sales

Apple event

Set Data

Chart named

“Summary of Sales”

of document “Sales Chart”

300 788 500 825

Server

application

SurfCharter

Set Data

event handler

SurfDB

Apple

event

object

Data to

set

Description

of Apple

event

object
1-12 Sending and Responding to Apple Events

C H A P T E R 1

Introduction to Interapplication Communication

1

Introduction to Interapplication C
om

m
unication

The Apple Event Manager provides routines that a server application can use in its
Apple event handlers to take apart an Apple event and examine its contents. The
SurfCharter application in Figure 1-6 can interpret the contents of the Set Data Apple
event according to the definition of that event in the Apple Event Registry: Standard Suites.
The Set Data event handler uses both Apple Event Manager routines and the SurfCharter
application’s own routines to locate the chart and make the requested change.

The Apple Event Manager also provides routines that a client application can use to
construct and send an Apple event. However, the most important requirement for
applications that support IAC is the ability to respond to Apple events, because this
ability is essential for an application that users can control through scripts. The next
section describes how you can use Apple events to support scripting in your application.

The chapter “Introduction to Apple Events” in this book provides an overview of Apple
events and describes how you can use the Apple Event Manager to implement Apple
events in your application. The chapters “Responding to Apple Events,” “Creating and
Sending Apple Events,” “Resolving and Creating Object Specifier Records,” and
“Recording Apple Events” provide detailed information about the Apple Event
Manager.

Supporting AppleScript and Other Scripting Languages 1

A script is any collection of data that, when executed by the appropriate program, causes
a corresponding action or series of actions. For example, some database,
telecommunications, and page-layout applications allow users to automate repetitive or
conditional tasks by means of scripts written in proprietary scripting languages. The
HyperTalk® scripting language allows users to control the behavior of HyperCard®
stacks. Macro programs can automate tasks at the level of mouse clicks and keystrokes.

The Open Scripting Architecture (OSA) provides a standard mechanism that allows
users to control multiple applications with scripts written in a variety of scripting
languages. Each scripting language has a corresponding scripting component. When a
scripting component executes a script, it performs the actions described in the script,
including sending Apple events to applications if necessary.

The OSA comprises the following parts:

■ The Apple Event Manager allows applications to respond to Apple events sent by
scripting components (see the previous section, “Sending and Responding to Apple
Events”).

■ The Apple Event Registry: Standard Suites defines the standard vocabulary of
Apple events.

■ The standard scripting component data structures, routines, and resources allow
applications to interact with any scripting component.

■ The AppleScript component implements the AppleScript scripting language.
Supporting AppleScript and Other Scripting Languages 1-13

C H A P T E R 1

Introduction to Interapplication Communication

The AppleScript component, which implements the AppleScript scripting language, is
the implementation of the OSA provided by Apple Computer, Inc. Users can view a
script written in the AppleScript scripting language in several different dialects, or
versions of the AppleScript language that resemble specific human languages or
programming languages.

Figure 1-7 shows the relationships among some of these parts. The client application
in Figure 1-7 is Script Editor, an application provided by Apple Computer, Inc., that
allows users to record, edit, and execute scripts. The client application could also be any
other application that uses the standard scripting component routines to execute scripts.
Script Editor uses the Component Manager to open a connection with the scripting
component that created the script to be executed.

Figure 1-7 How a scripting component executes a script

Component Manager

Client

application

Scripting component

Server applications

Apple events

Apple Event Manager

Script Editor
Script
1-14 Supporting AppleScript and Other Scripting Languages

C H A P T E R 1

Introduction to Interapplication Communication

1
Introduction to Interapplication C

om
m

unication

Like sound resources, scripts can be stored in applications and documents as well as in
distinct script files that can be manipulated from the Finder. Script Editor allows users to
execute scripts stored in script files. Users can also execute special script files called
script applications simply by opening them from the Finder.

During script execution, scripting components perform actions described in the script,
using the Apple Event Manager to send Apple events when necessary. The server
applications shown in Figure 1-7 use the Apple Event Manager to examine the contents
of the Apple events they receive and to respond appropriately. A server application
always responds to the same Apple event in the same way, regardless of whether the
event is sent by a scripting component or directly by a client application.

You can take advantage of the OSA in three ways:

■ You can make your application scriptable, or capable of responding to Apple events
sent to it by a scripting component. An application is scriptable if it
n Responds to the appropriate standard Apple events. See the previous section,

“Sending and Responding to Apple Events.”
n Provides an Apple event terminology extension ('aete') resource that describes

which Apple events your application supports and the corresponding
human-language terminology for use in scripts. The 'aete' resource allows
scripting components to interpret scripts correctly and send the appropriate Apple
events to your application during script execution.

By executing scripts, users of scriptable applications can perform almost any task that
they would otherwise perform by choosing menu commands, typing, and so on.
Users can also execute scripts to perform many tasks that might otherwise be difficult
to accomplish, especially repetitive or conditional tasks that involve multiple
applications.

■ You can make your application recordable— that is, capable of sending Apple events
to itself in response to user actions such as choosing a menu command or changing
the contents of a document. After a user has turned on recording for a particular
scripting component, the scripting component receives copies of all subsequent
Apple events and records them in the form of a script.

■ You can have your application manipulate and execute scripts with the aid of a
scripting component. To do so, your application must
n use the Component Manager to open a connection with the appropriate component
n use the standard scripting component routines to record, edit, compile, save, load,

or execute scripts when necessary
Users of applications that execute scripts can modify the applications’ behavior by
editing the scripts. For example, a user of an invoice program might be able to write a
script that checks and if necessary updates customer information in a separate
database application each time the user posts an invoice.

The sections that follow describe these three kinds of scripting capabilities in more
detail. The chapter “Introduction to Scripting” in this book provides an overview of the
way scripting components work and how you can implement support for scripting in
your application.
Supporting AppleScript and Other Scripting Languages 1-15

C H A P T E R 1

Introduction to Interapplication Communication
Scriptable Applications 1
If your application can respond to standard Apple events sent by other applications, it
can also respond to the same Apple events sent by a scripting component. Before
executing a script that controls your application, a scripting component must associate
the human-language terms used in the script with specific Apple event codes supported
by your application. Scriptable applications provide this information in an Apple event
terminology extension ('aete') resource.

Because scripting components can obtain information from 'aete' resources about the
nature of different applications’ support for Apple events, a single script can describe
complex tasks performed cooperatively by several specialized applications. For example,
a user can execute an AppleScript script to locate all records in a database with specific
characteristics, update a series of charts based on those records, import the charts into a
page-layout document, and send the document to a remote computer on the network via
electronic mail.

When a user executes such a script, the AppleScript component attempts to perform the
actions the script describes, including sending Apple events to various applications
when necessary. To map human-language terms used in the script to the corresponding
Apple events supported by each application, the AppleScript component looks up the
terms in the applications’ 'aete' resources. Each human-language term specified by an
application’s 'aete' resource has a corresponding Apple event code. After the
AppleScript component has identified the Apple event codes for the terms used in a
script, it can create and send the Apple events that perform the actions described in
the script.

To respond appropriately to the Apple events sent to it by the AppleScript component,
the database application in this example must be able to locate records with specific
characteristics so that it can identify and return the requested data. The other
applications involved must support Apple events that perform the other actions
described in the script.

One line in such a script might be a statement like this:

copy Totals to chart "Summary of Sales" of document "Sales Chart"

In this statement, the word Totals is a variable that has been set earlier in the same
script to the value of the new data generated by a database application. The statement
causes the AppleScript component to send a Set Data event updating the chart named
“Summary of Sales.” Figure 1-8 shows how the AppleScript component would execute
this statement. (Figure 1-6 on page 1-12 shows a database application that sends a similar
Set Data event directly.)

To interpret the terms in this script statement correctly, the AppleScript component must
be able to look them up in the SurfCharter application’s 'aete' resource, which maps
those terms to the corresponding codes for Apple events, object classes, and so on used
by the Apple Event Manager. The AppleScript component can then create and send the
Set Data event to SurfCharter.
1-16 Supporting AppleScript and Other Scripting Languages

C H A P T E R 1

Introduction to Interapplication Communication

1
Introduction to Interapplication C

om
m

unication
When it receives the Set Data event, the SurfCharter application uses the Apple Event
Manager to determine what kind of Apple event has been sent and to pass the event to
SurfCharter’s handler for that event, which in turn locates the chart and changes its data
as requested.

The chapter “Introduction to Scripting” in this book describes how the 'aete' resource
works. The chapter “Apple Event Terminology Resources” describes how to define
terminology for use by the AppleScript component and how to create an 'aete'
resource.

Figure 1-8 A Set Data event sent during script execution

Client

application

Chart of sales

by product area:

300

788

Sales Chart

500 825

Summary of

Sales

Apple event

Set Data

Chart named

“Summary of Sales”

of document

“Sales Chart”

300 788 500 825

Server

application

SurfCharter

Set Data

event handler

Component Manager

AppleScript

component

Apple event codes for human-language terms
'aete' resource

Script Editor

Script

tell application "SurfCharter"

 copy Totals to chart "Summary of Sales"¬

			 of document "Sales Chart"

end tell
Supporting AppleScript and Other Scripting Languages 1-17

C H A P T E R 1

Introduction to Interapplication Communication
Recordable Applications 1
If you decide to make your application scriptable, you can also make it recordable,
allowing users to record their actions in your application in the form of a script. Even
users with little or no knowledge of a particular scripting language can record their
actions in recordable applications in the form of a script. More knowledgeable users can
record scripts and then edit or combine them as desired.

Applications generally have two parts: the code that implements the application’s user
interface and the code that actually performs the work of the application when the user
manipulates the interface. To make your application fully recordable, you should
separate these two parts of your application, using Apple events to connect user actions
with the work your application performs.

Any significant user action within a recordable application should generate Apple events
that a scripting component can record as statements in a script. For example, when a
user chooses New from the File menu, a recordable application sends itself a Create
Element event, and the application’s handler for that event creates the new document.
Implementing Apple events in this manner is called factoring your application. A
factored application acts as both the client and the server application for the Apple
events it sends to itself.

In general, a recordable application should generate Apple events for any user action
that could be reversed by the Undo command. A recordable application can usually
handle a greater variety of Apple events than it can record, since it must record the same
action the same way every time even though Apple events might be able to trigger
that action in several different ways.

A recordable event is any Apple event that any recordable application sends to itself
while recording is turned on for the local computer (with the exception of events that the
application indicates it does not want to be recorded). After a user turns on recording
from the Script Editor application, the Apple Event Manager sends copies of all
recordable events to Script Editor. A scripting component previously selected by the user
handles each copied event for Script Editor by translating the event into the scripting
component’s scripting language and recording the translation as part of a Script Editor
script. When a scripting component executes a recorded script, it sends the
corresponding Apple events to the applications in which they were recorded.

Figure 1-9 illustrates how Apple event recording works. The user performs a significant
action (such as choosing New from the File menu), and the SurfCharter application
sends itself an Apple event to perform the task associated with that action. If recording is
turned on, the Apple Event Manager automatically sends a copy of each recordable
Apple event to the application (for example, Script Editor) that initiated recording. The
scripting component handles the copy of each recordable event by translating it and
recording it as part of a script. To translate each Apple event correctly, the scripting
component must first check what equivalent human-language terminology the
SurfCharter application uses for that Apple event. The scripting component then records
the equivalent statement in the script.
1-18 Supporting AppleScript and Other Scripting Languages

C H A P T E R 1

Introduction to Interapplication Communication

1
Introduction to Interapplication C

om
m

unication
The chapter “Recording Apple Events” in this book describes the Apple Event
Manager’s recording mechanism in more detail and explains how to use Apple events to
factor your application.

Figure 1-9 Recording user actions in a factored application

Applications That Manipulate and Execute Scripts 1
Like sound resources, scripts can be stored either as separate files with their own icons in
the Finder or within an application or its documents. Your application can store and
execute scripts regardless of whether it is scriptable or recordable. If your application is
scriptable, however, it can execute scripts that control its own behavior, thus acting
as both the client application and the server application for the corresponding
Apple events.

Your application can establish a connection with any scripting component that is
registered with the Component Manager on the same computer. Each scripting
component can manipulate and execute scripts written in the corresponding scripting
language (or, as in the case of AppleScript, one of the scripting language’s dialects) when
your application calls the standard scripting component routines.

You can use the standard scripting component routines to

■ get a handle to a script so you can save the script in a preferences file, in the data fork
of a document, or as a separate script file

■ manipulate scripts associated with any part of your application or its documents,
including both Apple event objects and other objects defined by the application

Apple

event

Copy of

Apple event

User action

handler

Apple event

handler

SurfCharter

Scripting component

Human-language terms for

 Apple event codes

'aete' resource

User action

Script
Supporting AppleScript and Other Scripting Languages 1-19

C H A P T E R 1

Introduction to Interapplication Communication
■ let users record and edit scripts

■ compile and execute scripts

Figure 1-10 shows how an application might execute a script that controls its own
behavior. The appropriate user action handler executes the script in response to a user
action, which can be almost anything: choosing a menu command, clicking a button,
tabbing from one table cell to another, and so on. The script might consist of a single
statement that describes some default action, such as saving or printing, or a series
of statements that describe a series of tasks, such as setting default preferences or styles.
Figure 1-10 shows a script that corresponds to a single Apple event, but the script could
just as easily correspond to a whole series of Apple events. If your application allows
users to modify such a script, they can modify the behavior of your application to suit
their needs.

Figure 1-10 Controlling an application’s own behavior by executing a script

Your application can associate a script with any Apple event object or
application-defined object and execute the script when that object is manipulated in
some way. The script can describe actions to be taken by your application, as in
Figure 1-10, or actions to be taken by several applications. For example, a user of a
word-processing application might attach a script to a specific word so that the
application executes the script whenever that word is double-clicked. Such a script could
trigger Apple events that look up and display related information from a separate
document, run a QuickTime movie, perform a calculation, play a voice annotation, and
so on.

User action

handler

Apple event

handler

Component Manager

SurfWriter

Apple event

User action

Script

Scripting component
1-20 Supporting AppleScript and Other Scripting Languages

C H A P T E R 1

Introduction to Interapplication Communication

1
Introduction to Interapplication C

om
m

unication
Figure 1-11 shows one way that a script can be used to control two or more applications.
When a user chooses the Post Invoice command in the accounting application, the user
action handler for that menu command executes a default script for posting an invoice.
That script might describe actions such as saving the invoice, updating the sales journal,
and so on. The scripting component sends Apple events to the accounting application to
perform these actions.

Figure 1-11 Posting an invoice and updating a database by executing a script

The accounting application also allows users to open the default invoice-posting script in
Script Editor and modify it so that additional actions are performed when it is executed.
For example, as shown in Figure 1-11, the script could instruct the SurfDB application to
update a database of customer information in addition to performing the default posting
actions. In this case, the scripting component sends Apple events to both the accounting
application and SurfDB to carry out all the actions described by the script.

User action

handler

Component Manager

Apple

event handler

Scripting

component

Apple events

Apple events

SurfDB

Apple

event handler

Client

Accounting application

Script
Supporting AppleScript and Other Scripting Languages 1-21

C H A P T E R 1

Introduction to Interapplication Communication
There is no limit to the actions such a script can describe. In addition to sending
the Apple events shown in Figure 1-11, the invoice-posting script could be used to
trigger Apple events that cause other applications to perform a credit check, send the
invoice to the customer by electronic mail, forward inventory information to a remote
server on the network, and so on.

The chapter “Scripting Components” in this book describes how your application can
use the standard scripting component routines to manipulate and execute its own scripts
and allow users to modify those scripts.

Exchanging Message Blocks 1

You should be able to meet most of your application’s IAC needs by using the Apple
Event Manager or the Event Manager. However, if you need low-level control or services
not provided by the Apple Event Manager or the Event Manager, you can use the PPC
Toolbox. The PPC Toolbox lets you send large amounts of data to other applications
located on the same computer or across a network. The PPC Toolbox can also be used by
pieces of code that are not event-driven. The PPC Toolbox is usually called by the
Operating System; device drivers, desk accessories, or other code modules can also use it.

You cannot use the PPC Toolbox to send data between applications unless both your
application and the application you’re communicating with are open at the same time.
To initiate communication, one program opens a port and requests a session with
another program. The target application must also open a port and accept the request.
Once a session is established, the two programs can read and write low-level message
blocks.

The PPC Toolbox also provides a standard user interface that allows a user working in
one application to select another application with which to exchange data, whether the
communication is achieved by means of Apple events, other high-level events, or
message blocks.

The chapter “Program-to-Program Communications Toolbox” in this book describes
how programs can exchange low-level message blocks.
1-22 Exchanging Message Blocks

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Interapplication Communication TOC
	Introduction to Interapplication Communication
	Overview of Interapplication Communication
	Sharing Data Among Applications
	Sending and Responding to Apple Events
	Standard Apple Events
	Handling Apple Events

	Supporting AppleScript and Other Scripting Languag...
	Scriptable Applications
	Recordable Applications
	Applications That Manipulate and Execute Scripts

	Exchanging Message Blocks

	 Edition Manager TOC
	 Edition Manager
	 Introduction to Apple Events TOC
	 Introduction to Apple Events
	 Responding to Apple Events TOC
	 Responding to Apple Events
	 Creating and Sending Apple Events TOC
	 Creating and Sending Apple Events
	 Resolving and Creating Object Specifier Records TOC
	 Resolving and Creating Object Specifier Records
	 Introduction to Scripting TOC
	 Introduction to Scripting
	 Apple Event Terminology Resources TOC
	 Apple Event Terminology Resources
	 Recording Apple Events TOC
	 Recording Apple Events
	 Scripting Components TOC
	 Scripting Components
	 Program-to-Program Communications Toolbox TOC
	 Program-to-Program Communications Toolbox
	 Data Access Manager TOC
	 Data Access Manager
	 Glossary
	 Index
	 Colophon

