[Reprintedfrom AT& T Bell Laboratories Technical Journal 63, No. 8 Part2 (October,1984), pp. 1897-
1910. The currentimplementatiorof the streammechanismsliffers slightly from that describechere,but
the structure remains the sant@opyright © 1984 AT&T.]

A Stream Input-Output System

Dennis M. Ritchie

ABSTRACT

In a new versionof the Unix operatingsystem,a flexible coroutine-basedesign
replacesthe traditional rigid connectionbetweenprocessesand terminalsor networks.
Processingnodulesmay be inserteddynamicallyinto the streamthat connectsa user’s
programto a device. Programsmay also connectdirectly to programs providing inter-
process communication.

Introduction

The part of the Unix operatingsystemthat dealswith terminalsand other characterdeviceshas
always been complicatedin recent versions of the system it has become even more so, for two reasons.

1) Network connectiongequire protocolsmore ornatethan are easily accommodatedh the existing
structure. A notion of “line disciplines” wasonly partially successfulmostly becausén the tradi-
tional system only one line discipline can be active at a time.

2) Thefundamentabatastructureof the traditionalcharactet/O system,a queueof individual charac-
ters (the “clist”), is costly becausédt acceptsand dispensesharacterone at a time. Attemptsto
avoid overheady bypassinghe mechanismrentirely or by introducingad hoc routinessucceedeth
speeding up the code at the expense of regularity.

Patchworksolutionsto specific problemswere destroyingthe modularity of this part of the system. The
time was ripe to redo the whole thinghis paper describes the new organization.

The systemdescribechererunson about20 machinesn the InformationSciencefResearciivision
of Bell Laboratories.Althoughit is beinginvestigatedy otherpartsof Bell Labs,it is not generallyavail-
able.

Overview
This section summarizes the nomenclature, components, and mechanisms of the new I/O system.

Streams

A streamiis afull-duplex connectiorbetweera user’'sprocessanda deviceor pseudo-devicelt con-
sistsof severalinearly connectegrocessingnodulesandis analogouso a Shell pipeline,exceptthat data
flows in bothdirections. The modulesin a streamcommunicatelmostexclusivelyby passingnessageto
their neighbors. Exceptfor someconventionalvariablesusedfor flow control, modulesdo not require
accesdo the storageof their neighbors. Moreover,a moduleprovidesonly oneentry point to eachneigh-
bor, namely a routine that accepts messages.

At the endof the streamclosestto the processs a setof routinesthat providetheinterfaceto therest
of the system. A user’'swrite andl/O controlrequestareturnedinto messagesentto the streamandread
requestdake datafrom the streamandpassit to the user. At the otherendof the streamis a devicedriver
module. Here,dataarriving from the streamis sentto the device;characterandstatetransitionsdetected
by the devicearecomposednto messageandsentinto the streamtowardsthe userprogram. Intermediate

modules process the messages in various ways.

Thetwo endmodulesin a streambecomeconnectedautomaticallywhenthe deviceis openedjnter-
mediatemodulesare attacheddynamicallyby requestof the user’sprogram. Streamprocessingnodules
are symmetrical; their read and write interfaces are identical.

Queues

Eachstreamprocessingnoduleconsistsof a pair of queues, onefor eachdirection. A queuecom-
prisesnot only a dataqueueproper,but alsotwo routinesand somestatusinformation. Oneroutineis the
put procedure, which is calledby its neighborto placemessageen the dataqueue. The other,the service
procedure, is scheduledo executewhenevetthereis work for it to do. The statusinformationincludesa
pointerto the next queuedownstreamyariousflags, anda pointerto additionalstateinformationrequired
by the instantiationof the queue. Queuesareallocatedin suchaway thatthe routinesassociatedavith one
half of a streammodulemay find the queueassociatedvith the otherhalf. (This is used,for example,in
generating echos for terminal input.)

Message blocks

The objectspassedbetweenqueuesare blocks obtainedfrom an allocator. Each containsa read
pointer, awrite pointer, anda limit pointer, which specifyrespectivelythe beginningof informationbeing
passed, its end, and a bound on the extent to which the write pointer may be increased.

The headerof a block specifiesits type; the mostcommonblockscontaindata. Therearealsocon-
trol blocks of variouskinds, all with the sameform as datablocks and obtainedfrom the sameallocator.
For example thereare control blocksto introducedelimitersinto the datastreamto passuserl/O control
requests, and to announce special conditions such as line break and carrier loss on terminal devices.

Althoughdatablocksarrivein discreteunits at the processingnodules poundariedetweerthemare
semanticallyinsignificant;standardsubroutinesnaytry to coalescexdjacentiatablocksin the same queue.
Control blocks, however, are never coalesced.

Scheduling

Although eachqueuemodulebehavesn somewayslike a separatgrocessit is not a real process;
the systemsavesno stateinformationfor a queuemodulethatis not running. In particularqueueprocess-
ing routinesdo not block whenthey cannotproceed put mustexplicitly returncontrol. A queuemay be
enabled by mechanismslescribedelow. Whena queuebecomenabledthe systemwill, assoonascon-
venient,call its serviceprocedureentry, which removessuccessivdlocksfrom the associatedlataqueue,
processeshem,and placesthemon the next queueby calling its put procedure.Whenthereareno more
blocksto processpr whenthe next queuebecomedull, the serviceprocedureeturnsto the system. Any
special state information must be saved explicitly.

Standardoutinesmakeenablingof queuemoduleslargely automatic. For example the routinethat
puts a block on a queue enables the queue service routine if the queue was empty.

Flow Control

Associatedvith eachqueues a pair of numbersusedfor flow control. A high-watermarklimits the
amountof datathatmay be outstandingn the queue;by conventionmodulesdo not placedataon a queue
aboveits limit. A low-watermarkis usedfor schedulingn this way: whena queuehasexceededts high-
watermark,aflag is set. Then,whenthe routine that takes blocks from a data queue notices that this flag is
set and that the queue has dropped below the low-water mark, the queue upstream of this one is enabled.

Simple Examples

Figurel depictsa streamdevicethathasjust beenopened. Thetop-levelroutines,drawnasa pair of
half-openrectangleon the left, areinvokedby users’read andwrite calls. The writer routinesendsmes-
sagedo the devicedriver shownon the right. Dataarriving from the deviceis composednto messages
sent to the top-level reader routine, which returns the data to the user process when itrezdcutes

user device
write out
user device
read in

Figure 1. Configuration after device open.

Figure 2 showsan ordinary terminal connectedoy an RS-232line. Here a processingnodule (the

pair of rectanglesn the middle)is interposedit performsthe servicemecessaryo maketerminalsusable,
for exampleechoing, character-erasand line-kill, tab expansionas required,and translationbetween
carriage-returrandnew-line. It is possibleto useoneof severaterminalhandlingmodules. The standard
oneprovidesservicedike thoseof the SeventhEdition system[1]; anotherresemblesghe Berkeley“new
tty” driver [2].

us_er tty out device
write out
user tty in de_vice
read in

Figure 2. Configuration for normal terminal attachment.

The processingnodulesin a streamarethoughtof asa stackwhosetop (shownhereon the left) is
nextto the userprogram. Thus,to install the terminal processingnoduleafter openinga terminaldevice,
the programthat makessuchconnectionexecutes “push” 1/0 control call namingthe relevantstream
andthe desiredprocessingnodule. Otherprimitives pop a modulefrom the stackanddeterminethe name
of the topmost module.

Most of the machines using the version ofdperatingsystemdescribedereareconnectedo a net-
work basedon the Datakit packetswitch[3]. Althoughthereis a variety of hostinterfacego the network,
mostof oursareprimitive, andrequirenetworkprotocolsto be conductedy the hostmachine ratherthan
by a front-endprocessor.Therefore whenterminalsare connectedo a hostthroughthe network,a setup
like thatshownin Fig. 3 is used;the terminal processingnoduleis stackedon the network protocolmod-
ule. Again, thereis a choiceof protocol modules,both a currentstandardand an older protocol that is
being phased out.

user tty out proto out device
write out
user tty in proto in de_wce
read in

Figure 3. Configuration for network terminals.

A commonfourth configuration(not illustrated)is usedwhenthe networkis usedfor file transfersor
other purposesvhenterminal processings not needed.It simply omits the “tty” moduleandusesonly
the protocolmodule. Someof our machinespn the otherhand,havefront-endprocessorprogrammedo
conductstandardchetworkprotocol. Herea connectiorfor remotefile transferwill resemblehatof Fig. 1,
because the protocol is handled outsideoperatingsystem likewise networkterminalconnectionvia the
front end will be handled as shown in Fig. 2.

M essages

Most of the messagebetweenmodulescontaindata. The allocatorthat dispensesnessagélocks
takesan argumentspecifyingthe smallestblock its calleris willing to accept. The currentallocatormain-
tains an inventory of blocks 46, 64,and1024characteréong. Modulesthatallocateblockschoosea size
by balancingspacelossin block linkage overheadagainstunusedspacein the block. For example,the
top-levelwrite routine requestseither 64- or 1024-characteblocks, becausesuch calls usually transmit
many charactersthe networkinput routine allocatesl 6-byteblocksbecausealataarrivesin packetsof that
size. The smallest blocks are used only to carry arguments to the control messages discussed below.

Besidesdatablocks, thereare also severalkinds of control messagesThe following messagesare
gueued along with data messages, in order to ensure that their effect occurs at the appropriate time.

BREAK is generatedly aterminaldeviceon detectionof aline breaksignal. The standardermi-
nal input processoturnsthis messagénto aninterruptrequest.It mayalsobe sentto a
terminal device driver to cause it to generate a break on the output line.

HANGUP is generatedby a devicewhenits remoteconnectiordrops. Whenthe messagearrivesat
thetop levelit is turnedinto aninterruptto the processandit alsomarksthe streamso
that further attempts to use it return errors.

DELIM is a delimiter in the data. Most of the streaml/O systemis preparedto provide true
streamsjn which recordboundariesareinsignificant,but therearevarioussituationsin
which it is desirableto delimit the data. For example terminalinput is readaline at a
time; DELIM is generated by the terminal input processor to demarcate lines.

DELAY tells terminaldriversto generatea real-timedelayon output;it allowstime for slow ter-
minals react to characters previously sent.

IOCTL messagesre generatedy users’ioctl systemcalls. The relevantparametersre gath-
eredat thetop level, andif therequesis not understoodhere,it andits parametersire
composednto a messagend sentdown the stream. The first modulethat understands
the particularrequestactson it andreturnsa positive acknowledgementintermediate
modulesthat do not recognizea particularioCcTL requesipassit on; stream-enanodules
return a negativeacknowledgementThe top-level routine waits for the acknowledge-
ment, and returns any information it carries to the user.

Other control messages are asynchronous and jump over queued data and non-priority control messages.
IOCACK

IOCNAK acknowledgaocTL messages.The deviceend of a streammust respondwith one of
these messages; the top level will eventually time out if no response is received.

SIGNAL messagesire generateddy the terminal processingnodule and causethe top level to
generate process signals suclyasandinterrupt.

FLUSH messageareusedto throw awaydatafrom input and outputqueuesaftera signalor on
request of the user.

STOP

START messagesare usedby the terminal processotto halt andrestartoutputby a device,for
exampleto implementthe traditional control-S/control-Q(X-on/X-off) flow control
mechanism.

Queue M echanisms and Interfaces

Associatedvith eachdirectionof afull-duplex streammoduleis a queuedatastructurewith the fol-
lowing form (somewhat simplified for exposition).

struct queue {

int flag; [* flag bits */

void (*putp)(); [* put procedure */

void (*servp)(); [* service procedure */

struct queue *next; [* next queue downstream */
struct block *first; [* first data block on queue */
struct block *last; [* last data block on queue */

int hiwater; /* max characters on queue */

int lowater; [* wakeup point as queue drains */
int count; [* characters now on queue */
void *ptr; [* pointer to private storage */

¥
Theflag word containsseveralbits usedby low-level routinesto control schedulingthey showwhether

the downstreanmodulewishesreaddata,or the upstreammodulewishesto write, or the queueis already
enabled.One bit is examined by the upstream module; it tells whether this queue is full.

Thefirst andlast membergointto the headandtail of a singly-linkedlist of dataandcontrol
blocksthatform the queueproper;hiwater andlowater areinitialized whenthe queueis createdand
when comparedagainstcount , the currentsize of the queue,determinewhetherthe queueis full and
whether it has emptied sufficiently to enable a blocked writer.

The ptr memberstoresan untypedpointerthat may be usedby the queuemoduleto keeptrack of
the locationof storageprivateto itself. For example eachinstantiationof the terminalprocessingnodule
maintains astructurecontainingvariousmodebits andspecialcharactersit storesa pointerto this structure
here. The type ofptr is artificial. It should be a union of pointers to each possible module state structure.

Streamprocessingnodulesarewritten in one of two generalstyles. In the simplerkind, the queue
module actsnearly as a classicalcoroutine. Whenit is instantiatedjt setsits put procedureputp to a
system-suppliedefaultroutine,andsuppliesa serviceprocedureservp . Its upstreammoduledispose®f
blocksby calling this module’sputp routine,which placesthe block on this module’squeue(by manipu-
latingthefirst andlast pointers.) The standarcput procedurealsoenableghe currentmodule;a short
time later the currentmodule’sserviceprocedureservp is calledby the scheduler.In pseudo-codethe
outline of a typical service routine is:

service(q)
struct queue *q

while (g is not empty and g->next is not full) {
get a block from q
process message block
call g->next->putp to dispose of
new or transformed block

}

This mechanismis appropriatdn casesn which messagesanbe processedndependentlyof eachother.
Forexample|t is usedby theterminaloutputmodule. All the schedulingdetailsaretakencareof by stan-
dard routines.

More complicatedmodulesneedfiner control over scheduling. A good exampleis terminal input.
Herethe devicemoduleupstreamproducescharactersysually one at a time, that mustbe gatherednto a
line to allow for characteeraseandkill processing.Thereforethe streaminput moduleprovidesa put pro-
cedureto be calledby the devicedriver or othermoduledownstreanfrom it; hereis an outline of this rou-
tine and its accompanying service procedure:

putproc(q, bp)
struct queue *q; struct block *bp

put bp on g

echo characters in bp’s data

if (bp’s data contains new-line or carriage return)
enable g

service(q)
struct queue *q

take data from q until new-line or carriage return,
processing erase and kill characters

call g->next->putp to hand line to upstream queue

call g->next->putp with DELIM message

The put proceduregenerateghe echo charactersaas promptly as possible;when the terminal moduleis
attachedo a devicehandler,they are createdduring the input interruptfrom the device,becausehe put
proceduras calledasa subroutineof the handler. On the otherhand,line-gatheringanderaseandkill pro-
cessing, which can be lengthy, are done during the service procedure at lower priority.

Connection with the Rest of the System

Although all the driversfor terminaland networkdevicesandall protocolhandlerswererewritten,
only minor changeswere requiredelsewherein the system. Characterdevicesand a characterdevice
switch, asdescribedoy Thompson4], arestill present.A pointerin the charactedeviceswitch structure,
if null, causeghe systemto treatthe deviceasalways;this is usedfor raw disk andtape,for example. If
not null, it pointsto initialization information for the streamdevice;whena streamdeviceis openedthe
gueuestructureshownin Fig. 1 is createdusingthis information,anda pointerto the structurenamingthe
stream is saved (in the “inode table”).

Subsequentlywhenthe userprocesanakesread, write, ioctl, or close calls, presencef a non-null
streampointer directsthe systemto usea setof streamroutinesto generateandreceivequeuemessages;
these are the “top-level routines” referred to previously.

Only afew changesn user-levelcodeare necessarymostbecausepeninga terminal putsit in the
“very raw” modeshownin Fig. 1. In orderto install the terminal-processingandler,it is necessaryor
programs such asit to execute the appropriatet! call.

I nter process Communication

As previouslydescribedthe streaml/O systemconstitutesa flexible communicationpath between
userprocesseanddevices. With a smalladdition,it alsoprovidesa mechanisnior interprocesgommuni-
cation. A specialdevice,the “pseudo-terminal” or PT, connectsprocesses.rT files comein even-odd
pairs; datawritten on the odd memberof the pair appearsasinput for the evenmember,andvice versa.
Theideais not new; it appearsn Tenex[5] andits successordpr example. It is analogougo pipes,and
especiallyto namedpipes[6]. PT files differ from traditional pipesin two ways:they arefull-duplex, and
controlinformationpasseshroughthemaswell asdata. They differ from the usualpseudo-termindliles
[2] by not having any of the usualterminal processingnechanismsnherentlyattachedo them;they are
puretransmittersof control and datamessagesPpT files are adequatdor settingup a reasonablygeneral
mechanism for explicit process communication, but by themselves are not especially interesting.

A specialmessage moduleprovidesmoreintriguing possibilities. In onedirection,the messagro-
cessortakescontrol and data messagessuch as those discussedabove,and transformsthem into data
blocksstartingwith a headergiving the messagéeype, andfollowed by the messageontent. In the other
direction,it parsessimilarly-structureddlatamessageandcreateshe correspondingontrol blocks. Figure
4 showsa configurationin which a userprocesommunicateshroughthe terminalmodule,a pPT file pair,
andthemessagenodulewith anotheruser-leveprocesghat simulates a device driveBecauseT files are
transparentand the messagemodule maps bijectively betweendevice-processlata and streamcontrol

device mesg i
process — P
mesg
user tty out
| - pt
process tty in

Figure 4. Configuration for device simulator.

messages, the devisanulatormay be completelyfaithful up to detailsof timing. In particular,user’sioctl
requestaresentto the deviceprocessaandarehandledby it, evenif theyarenot understoody the operat-
ing system.

The usefulnes®f this setupis not somuchto simulatenewdevicesput to providewaysfor onepro-
gramto controlthe environmenbf another. Pike [6] showshow thesemechanismsireusedto createmul-
tiple virtual terminalson onephysicalterminal. In anotherapplication,inter-machineconnectionsn which
a useron one computerogs into anothemrmakeuseof the messagenodule. Heretheioctl requestgiener-
atedby programson the remotemachinearetranslatedoy this moduleinto datamessagethat canbe sent
over the networkThe local callout program translates them back into terminal control commands.

Evaluation

My intentin rewriting the characted/O systemwasto improveits structureby separatingunctions
thathadbeenintertwined,andby allowing independenimodulesto be connectedlynamicallyacrosswell-
definedinterfaces.l alsowantedto makethe systemfasterandsmaller. The mostdifficult partof the pro-
ject was the design of the interfadewas guided by these decisions:

1) It seemedo be necessaryor efficiency that the objectspasseetweenmodulesbe referencego
blocks of data. The mostimportantconsequencesf this principle, andthosethat proveddeciding,
arethat dataneednot be copiedasit passesacrossa moduleinterface,andthatmanycharactergan
be handledduring a single intermoduletransmission. Another effect, undesirablebut acceptedijs
that eachmodule must be preparedto handlediscretechunksof dataof unpredictablesize. For
example a protocolthat expectsrecordscontaining(say)an 8-byte heademustbe preparedo paste
together smaller data blockadsplit ablock containingbotha headeandfollowing data. A related,
althoughnot necessarilyconsequentiecisionwasto makethe codeassumehat the datais address-
able.

2) | decidedwith regret,thateachprocessingnodulecould not actasanindependenprocesswith its
own call record. The numbersseemedagainstit: on large systemsit is necessaryo allow for as
manyas1000queuesandl sawno goodway to run this manyprocessesvithout consumingnordi-
nate amountsof storage. As a result, streamserverproceduresare not allowed to block awaiting
data, but insteadmust return after saving necessangtatusinformation explicitly. The contortions
requiredin the codeare seldomseriousin practice,but the beautyof the schemewould increaseaf
servers could be written as a simple read-write loop in the true coroutine style.

3) Thecharacteristideatureof the design the serverandput procedureswasthe mostdifficult to work
out. | beganwith a belief that the intermoduleinterfaceshould be identical in the readand write
directions. Next, | observedhat a pure call model (put procedureonly) would not work; queueing
would be necessarat somepoint. Forexamplejf thewrite systementry calledthroughtheterminal
processingnoduleto the devicedriver, the driver would needto queuecharacterinternally lestout-
put be completelysynchronous.On the otherhand,a pure queueingmodel (serviceprocedureonly;
upstreammodulesalwaysplacetheir datain aninput queue)alsoappearedmpractical. As discussed

above,a module (for exampleterminal input) must often be activatedat times that dependon its
input data.

After considerablehurningof details,the modelpresentediereemerged.In generalts performance
by various measures lives up to hopes.

The improvementin modularity is hard to measureput seemsreal; for example,the number of
includedheadeffiles in streammodulesdropsto aboutonehalf of thoserequiredby similar routinesin the
basesystem(4.1 BSD). Certainlystreammodulesmaybe composednorefreely thanwerethe “line disci-
plines” of older systems.

The programtext sizeof the versionof the operatingsystemdescribechereis about106 kilobyteson
the VAX; the basesystemwasabout130KB. The reductionwasachievedy rewriting the variousdevice
drivers and protocolsand eliminating the SeventhEdition multiplexedfiles [1], most (thoughnot all) of
whosefunctionsaresubsumedy othermechanismsOn the otherhand,the dataspacehasincreased.On
a VAX 11/750configuredfor 32 usersabout32KB are usedfor storageof the structuresfor streams,
gueuesandblocks. Thetraditionalcharactelists seemto requireless;similar systemsrom Berkeleyand
AT&T use between 14 and 19KBhe tradeoff of program for data seems desirable.

Propertime comparisonfavenot beenmade becausef the difficulty of finding a comparablecon-
figuration. On a VAX 11/750, printing a large file on a directly-connectederminal consumes346
microsecondger characteusingthe systemdescribecdhere;this is about10 per centslowerthanthe base
system. Onthe otherhand,thatsystem’sper-characteinterruptroutineis codedin assemblyanguage, and
therestof its terminalhandleris repletewith nonportablénterpolatedassemblycode;the currentsystemis
written completelyin C. Printing the samefile on a terminalconnectedhrougha primitive networkinter-
face requires 136 microseconds per character, half as mtiehodder networkroutines. Pike[7] observes
that amongthe threeimplementationf Blit connectionsoftware,the one basedon the streamsystemis
the only onethat candownloadprogramsat anythingapproachindine speedhrougha 19.2 Kbps connec-
tion. In generall concludethatthe new organizatiomeverslowscomparabléasksmuch,andthatconsid-
erable speed improvements are sometimes possible.

Although the new organizationperformswell, it hasseveralpeculiaritiesand limitations. Someof
them seem inherent, some are fixable, and some are the subject of current work.

I/O control calls turn into messagethat requireanswerseforea resultcanbe returnedto the user.
Sometimedhe messageiltimately goesto anotheruser-levelprocesghat may reply tardily or never. The
stream iswrite-lockeduntil thereply returns,in orderto eliminatethe needto determinewhich procesgets
whichreply. A timeoutbreaksthe lock, sothereis anunjustifiederrorreturnif areply is late,anda long
lockup period if onés lost. The problemcanbeamelioratedy working harderonit, butit typifies the dif-
ficulties that turn up when direct calls are replaced by message-passing schemes.

Severalodditiesappearbecausdime spentin serverroutinescannotbe assignedo any particular
useror process.lt is impossible,for example,for devicesto supportprivilegedioctl calls, becausehe
devicehasno ideawho generatedhe message Accountingand schedulingpecomelessaccuratea short
censuf severalsystemsshowedthat betweend and8 per centof non-idle CPU time wasbeing spentin
serverroutines. Finally, the anonymityof serverprocessingnostcertainlymakesit moredifficult to mea-
sure the performance of the new I/O system.

In its currentform the streaml/O systemis purely data-driven.Thatis, datais presentedby a user’s
write call, andpasseshroughto the device;converselydataappearsinbiddenfrom a deviceandpasseso
thetop level, whereit is pickedup by read calls. Wherevempossibleflow controlthrottlesdownfastgener-
atorsof data,but nowhereexceptat the consumerend of a streamis thereknowledgeof preciselyhow
much datais desired. Considera commandto executepossiblyinteractiveprogramon anothermachine
connectedyy a stream. The simplestsuchcommandsetsup the connectionandinvokesthe remotepro-
gram,andthencopiescharacterdérom its own standardnput to the streamandfrom the streamto its stan-
dardoutput. The schemds adequatén practice but breakswhenthe usertypesmorethanthe remotepro-
gram expectsFor example, if theemoteprogramreadsno input atall, anytyped-aheadharactersaresent
to the remotesystemandlost. This demonstratea problem,but | know of no solutioninside the stream
I/O mechanism itself; other ideas will have to be applied.

Streamarelinear connectionsby themselvesthey supportno notion of multiplexing, fan-in or fan-

out. Exceptat the endsof a stream,eachinvocationof a modulehasa unique“next” and “previous”
module. Two locally-importantapplicationsof streamdestify to the importanceof multiplexing: Blit ter-
minal connectionswherethe multiplexing is donewell, thoughat someperformancecost, by a userpro-
gram,andremoteexecutionof command®vera network,whereit is desiredbut not now easy to separate
the standarcdutputfrom erroroutput. It seemdikely thata generaimultiplexing mechanisntouldhelpin
both cases, but again, | do not yet know how to design it.

Althoughthe currentdesignprovideselegantmeansfor controlling the semanticoof communication
channelsalreadyopened,t lacks generalways of establishingchannelsbetweenprocesses.The PT files
describedabove are just fine for Blit layers, and work adequatelyfor handling a few administrator-
controlledclient-serverrelationships. (Yes, we havemulti-machinemazewar.) Neverthelesshetternam-
ing mechanisms are called for.

In spiteof theselimitations, the streaml/O systemworkswell. Its aim wasto improvedesignrather
thanto add features, in the belief that with proper design, the features come chigaplgpproach is ardu-
ous, but continues to succeed.

References
1. Unix Programmers’s Manual, Seventh Editi@®|l Laboratories, Murray Hill, NJ, (January, 1979).

2. Unix Programmer'sManual, Virtual VAX-11 Version, University of California, Berkeley (June
1981).

3. A. G. Fraser,'Datakit--A Modular Networkfor Synchronousnd Asynchronouslraffic,” Proc. Int.
Conf. on Communicatiogoston, MA (June 1979).

4. K. Thompson,“The Unix Time-sharingSystem--Uniximplementation,”B.S.T.J. 57 No 6, (July-
Aug 1978), pp. 1931-1946.

5. D.G. Bobrow, J.D. Burchfiel, D.L. Murphy, and R.S Tomlinson, “Tenex--a PagedTime Sharing
System for the PDP-10,” C. ACNI5 No. 3, (March 1972), pp. 135-143.

6. T.A. Dolotta, S.B. Olsson,,andA.G.Petrucelli,Unix User's Manual, Release3.0, Bell Laboratories,
Murray Hill, NJ (June 1980).

7. R.Pike, The Blit: A Multiplexed GraphicsTerminal,” AT&T Tech.J. 63 No. 8 Part2, October
1984.

