
[Reprintedfrom AT&T Bell Laboratories Technical Journal 63, No. 8 Part2 (October,1984),pp. 1897-
1910. Thecurrentimplementationof the streammechanismsdiffers slightly from thatdescribedhere,but
the structure remains the same.Copyright © 1984 AT&T.]

A Stream Input-Output System

Dennis M. Ritchie

ABSTRACT

In a new versionof the Unix operatingsystem,a flexible coroutine-baseddesign
replacesthe traditional rigid connectionbetweenprocessesand terminalsor networks.
Processingmodulesmay be inserteddynamicallyinto the streamthat connectsa user’s
programto a device. Programsmay alsoconnectdirectly to programs,providing inter-
process communication.

Introduction

The part of the Unix operatingsystemthat dealswith terminalsand other characterdeviceshas
always been complicated.In recent versions of the system it has become even more so, for two reasons.

1) Network connectionsrequireprotocolsmore ornatethan are easily accommodatedin the existing
structure. A notion of ‘‘line disciplines’’ wasonly partially successful,mostly becausein the tradi-
tional system only one line discipline can be active at a time.

2) The fundamentaldatastructureof the traditionalcharacterI/O system,a queueof individual charac-
ters (the ‘‘clist’’), is costly becauseit acceptsanddispensescharactersoneat a time. Attemptsto
avoidoverheadby bypassingthemechanismentirelyor by introducingad hoc routinessucceededin
speeding up the code at the expense of regularity.

Patchworksolutionsto specificproblemsweredestroyingthe modularityof this part of the system. The
time was ripe to redo the whole thing.This paper describes the new organization.

Thesystemdescribedhererunson about20 machinesin theInformationSciencesResearchDivision
of Bell Laboratories.Althoughit is beinginvestigatedby otherpartsof Bell Labs,it is not generallyavail-
able.

Overview

This section summarizes the nomenclature, components, and mechanisms of the new I/O system.

Streams

A stream is a full-duplex connectionbetweena user’sprocessanda deviceor pseudo-device.It con-
sistsof severallinearly connectedprocessingmodules,andis analogousto a Shellpipeline,exceptthat data
flows in bothdirections. Themodulesin a streamcommunicatealmostexclusivelyby passingmessagesto
their neighbors. Except for someconventionalvariablesusedfor flow control, modulesdo not require
accessto thestorageof their neighbors.Moreover,a moduleprovidesonly oneentrypoint to eachneigh-
bor, namely a routine that accepts messages.

At theendof thestreamclosestto theprocessis a setof routinesthatprovidetheinterfaceto therest
of thesystem.A user’swrite andI/O controlrequestsareturnedinto messagessentto thestream,andread
requeststakedatafrom thestreamandpassit to theuser. At theotherendof thestreamis a devicedriver
module. Here,dataarriving from the streamis sentto the device;charactersandstatetransitionsdetected
by thedevicearecomposedinto messagesandsentinto thestreamtowardstheuserprogram. Intermediate



- 2 -

modules process the messages in various ways.

Thetwo endmodulesin a streambecomeconnectedautomaticallywhenthedeviceis opened;inter-
mediatemodulesareattacheddynamicallyby requestof the user’sprogram. Streamprocessingmodules
are symmetrical; their read and write interfaces are identical.

Queues

Eachstreamprocessingmoduleconsistsof a pair of queues, onefor eachdirection. A queuecom-
prisesnot only a dataqueueproper,but alsotwo routinesandsomestatusinformation. Oneroutineis the
put procedure, which is calledby its neighborto placemessageson thedataqueue.Theother,the service
procedure, is scheduledto executewheneverthereis work for it to do. The statusinformationincludesa
pointerto the next queuedownstream,variousflags,anda pointerto additionalstateinformationrequired
by the instantiationof thequeue.Queuesareallocatedin sucha way that theroutinesassociatedwith one
half of a streammodulemay find the queueassociatedwith the otherhalf. (This is used,for example,in
generating echos for terminal input.)

Message blocks

The objectspassedbetweenqueuesare blocks obtainedfrom an allocator. Eachcontainsa read
pointer, a write pointer, anda limit pointer, which specifyrespectivelythebeginningof informationbeing
passed, its end, and a bound on the extent to which the write pointer may be increased.

Theheaderof a block specifiesits type; the mostcommonblockscontaindata. Therearealsocon-
trol blocksof variouskinds, all with the sameform asdatablocksandobtainedfrom the sameallocator.
For example,therearecontrol blocksto introducedelimitersinto the datastream,to passuserI/O control
requests, and to announce special conditions such as line break and carrier loss on terminal devices.

Althoughdatablocksarrivein discreteunitsat theprocessingmodules,boundariesbetweenthemare
semanticallyinsignificant;standardsubroutinesmaytry to coalesceadjacentdatablocksin thesame queue.
Control blocks, however, are never coalesced.

Scheduling

Although eachqueuemodulebehavesin somewayslike a separateprocess,it is not a real process;
thesystemsavesno stateinformationfor a queuemodulethat is not running. In particularqueueprocess-
ing routinesdo not block whenthey cannotproceed,but mustexplicitly returncontrol. A queuemay be
enabled by mechanismsdescribedbelow. Whena queuebecomesenabled,thesystemwill, assoonascon-
venient,call its serviceprocedureentry,which removessuccessiveblocksfrom the associateddataqueue,
processesthem,andplacesthemon the next queueby calling its put procedure.Whenthereareno more
blocksto process,or whenthe next queuebecomesfull, the serviceprocedurereturnsto the system. Any
special state information must be saved explicitly.

Standardroutinesmakeenablingof queuemoduleslargelyautomatic.For example,the routinethat
puts a block on a queue enables the queue service routine if the queue was empty.

Flow Control

Associatedwith eachqueueis a pair of numbersusedfor flow control. A high-watermark limits the
amountof datathatmaybeoutstandingin thequeue;by convention,modulesdo not placedataon a queue
aboveits limit. A low-watermark is usedfor schedulingin this way: whena queuehasexceededits high-
watermark,a flag is set. Then,whenthe routine that takes blocks from a data queue notices that this flag is
set and that the queue has dropped below the low-water mark, the queue upstream of this one is enabled.

Simple Examples

Figure1 depictsa streamdevicethathasjust beenopened.Thetop-levelroutines,drawnasa pair of
half-openrectangleson the left, areinvokedby users’read andwrite calls. Thewriter routinesendsmes-
sagesto the devicedriver shownon the right. Dataarriving from the deviceis composedinto messages
sent to the top-level reader routine, which returns the data to the user process when it executesread.



- 3 -

user
write

device
out

device
in

user
read

Figure 1. Configuration after device open.

Figure2 showsan ordinary terminalconnectedby an RS-232line. Herea processingmodule(the
pair of rectanglesin themiddle) is interposed;it performstheservicesnecessaryto maketerminalsusable,
for exampleechoing,character-eraseand line-kill, tab expansionas required,and translationbetween
carriage-returnandnew-line. It is possibleto useoneof severalterminalhandlingmodules.Thestandard
oneprovidesserviceslike thoseof the SeventhEdition system[1]; anotherresemblesthe Berkeley‘‘new
tty’’ driver [2].

user
write

tty out
device

out
device

in
tty in

user
read

Figure 2. Configuration for normal terminal attachment.

The processingmodulesin a streamarethoughtof asa stackwhosetop (shownhereon the left) is
next to the userprogram. Thus,to install the terminalprocessingmoduleafteropeninga terminaldevice,
the programthat makessuchconnectionsexecutesa ‘‘push’’ I/O control call namingthe relevantstream
andthedesiredprocessingmodule. Otherprimitivespopa modulefrom thestackanddeterminethename
of the topmost module.

Most of the machines using the version of theoperatingsystemdescribedhereareconnectedto a net-
work basedon theDatakitpacketswitch [3]. Although thereis a varietyof hostinterfacesto thenetwork,
mostof oursareprimitive, andrequirenetworkprotocolsto beconductedby thehostmachine,ratherthan
by a front-endprocessor.Therefore,whenterminalsareconnectedto a hostthroughthe network,a setup
like thatshownin Fig. 3 is used;the terminalprocessingmoduleis stackedon the networkprotocolmod-
ule. Again, thereis a choiceof protocol modules,both a currentstandardand an older protocol that is
being phased out.

user
write

tty out proto out
device

out
device

in
proto intty in

user
read

Figure 3. Configuration for network terminals.

A commonfourth configuration(not illustrated)is usedwhenthenetworkis usedfor file transfersor
otherpurposeswhenterminalprocessingis not needed.It simply omits the ‘‘tty’’ moduleandusesonly
theprotocolmodule. Someof our machines,on theotherhand,havefront-endprocessorsprogrammedto
conductstandardnetworkprotocol. Herea connectionfor remotefile transferwill resemblethatof Fig. 1,
because the protocol is handled outsidetheoperatingsystem;likewisenetworkterminalconnectionsvia the
front end will be handled as shown in Fig. 2.



- 4 -

Messages

Most of the messagesbetweenmodulescontaindata. The allocatorthat dispensesmessageblocks
takesanargumentspecifyingthe smallestblock its caller is willing to accept.Thecurrentallocatormain-
tains an inventory of blocks 4,16,64,and1024characterslong. Modulesthatallocateblockschoosea size
by balancingspaceloss in block linkage overheadagainstunusedspacein the block. For example,the
top-level write routine requestseither 64- or 1024-characterblocks, becausesuchcalls usually transmit
manycharacters;thenetworkinput routineallocates16-byteblocksbecausedataarrivesin packetsof that
size. The smallest blocks are used only to carry arguments to the control messages discussed below.

Besidesdatablocks,therearealsoseveralkinds of control messages.The following messagesare
queued along with data messages, in order to ensure that their effect occurs at the appropriate time.

BREAK is generatedby a terminaldeviceon detectionof a line breaksignal. Thestandardtermi-
nal input processorturnsthis messageinto an interruptrequest.It mayalsobesentto a
terminal device driver to cause it to generate a break on the output line.

HANGUP is generatedby a devicewhenits remoteconnectiondrops. Whenthemessagearrivesat
the top level it is turnedinto an interruptto theprocess,andit alsomarksthestreamso
that further attempts to use it return errors.

DELIM is a delimiter in the data. Most of the streamI/O systemis preparedto provide true
streams,in which recordboundariesareinsignificant,but therearevarioussituationsin
which it is desirableto delimit the data. For example,terminal input is reada line at a
time; DELIM is generated by the terminal input processor to demarcate lines.

DELAY tells terminaldriversto generatea real-timedelayon output;it allowstime for slow ter-
minals react to characters previously sent.

IOCTL messagesaregeneratedby users’ioctl systemcalls. The relevantparametersaregath-
eredat the top level, andif the requestis not understoodthere,it andits parametersare
composedinto a messageandsentdown the stream. The first modulethat understands
the particularrequestactson it and returnsa positive acknowledgement.Intermediate
modulesthatdo not recognizea particularIOCTL requestpassit on; stream-endmodules
return a negativeacknowledgement.The top-level routine waits for the acknowledge-
ment, and returns any information it carries to the user.

Other control messages are asynchronous and jump over queued data and non-priority control messages.

IOCACK

IOCNAK acknowledgeIOCTL messages.The deviceend of a streammust respondwith one of
these messages; the top level will eventually time out if no response is received.

SIGNAL messagesare generatedby the terminal processingmoduleand causethe top level to
generate process signals such asquit andinterrupt.

FLUSH messagesareusedto throw awaydatafrom input andoutputqueuesaftera signalor on
request of the user.

STOP

START messagesareusedby the terminalprocessorto halt andrestartoutput by a device,for
example to implement the traditional control-S/control-Q(X-on/X-off) flow control
mechanism.

Queue Mechanisms and Interfaces

Associatedwith eachdirectionof a full-duplex streammoduleis a queuedatastructurewith the fol-
lowing form (somewhat simplified for exposition).



- 5 -

struct queue {
int flag; /* flag bits */
void (*putp)(); /* put procedure */
void (*servp)(); /* service procedure */
struct queue *next; /* next queue downstream */
struct block *first; /* first data block on queue */
struct block *last; /* last data block on queue */
int hiwater; /* max characters on queue */
int lowater; /* wakeup point as queue drains */
int count; /* characters now on queue */
void *ptr; /* pointer to private storage */

};

The flag word containsseveralbits usedby low-level routinesto control scheduling:they showwhether
the downstreammodulewishesreaddata,or the upstreammodulewishesto write, or thequeueis already
enabled.One bit is examined by the upstream module; it tells whether this queue is full.

The first and last memberspoint to theheadandtail of a singly-linkedlist of dataandcontrol
blocksthat form thequeueproper;hiwater andlowater areinitialized whenthequeueis created,and
when comparedagainstcount , the currentsize of the queue,determinewhetherthe queueis full and
whether it has emptied sufficiently to enable a blocked writer.

Theptr memberstoresanuntypedpointerthat may be usedby the queuemoduleto keeptrack of
the locationof storageprivateto itself. For example,eachinstantiationof the terminalprocessingmodule
maintains astructurecontainingvariousmodebits andspecialcharacters;it storesa pointerto this structure
here. The type ofptr is artificial. It should be a union of pointers to each possible module state structure.

Streamprocessingmodulesarewritten in oneof two generalstyles. In the simplerkind, the queue
moduleactsnearly as a classicalcoroutine. When it is instantiated,it setsits put procedureputp to a
system-supplieddefaultroutine,andsuppliesa serviceprocedureservp . Its upstreammoduledisposesof
blocksby calling this module’sputp routine,which placestheblock on this module’squeue(by manipu-
lating the first andlast pointers.) Thestandardput procedurealsoenablesthecurrentmodule;a short
time later the currentmodule’sserviceprocedureservp is calledby the scheduler.In pseudo-code,the
outline of a typical service routine is:

service(q)
struct queue *q

while (q is not empty and q->next is not full) {
get a block from q
process message block
call q->next->putp to dispose of

new or transformed block
}

This mechanismis appropriatein casesin which messagescanbe processedindependentlyof eachother.
For example,it is usedby theterminaloutputmodule. All theschedulingdetailsaretakencareof by stan-
dard routines.

More complicatedmodulesneedfiner control over scheduling.A goodexampleis terminal input.
Herethe devicemoduleupstreamproducescharacters,usuallyoneat a time, that mustbe gatheredinto a
line to allow for charactereraseandkill processing.Thereforethestreaminput moduleprovidesa put pro-
cedureto becalledby thedevicedriver or othermoduledownstreamfrom it; hereis anoutlineof this rou-
tine and its accompanying service procedure:



- 6 -

putproc(q, bp)
struct queue *q; struct block *bp

put bp on q
echo characters in bp’s data
if (bp’s data contains new-line or carriage return)

enable q

service(q)
struct queue *q

take data from q until new-line or carriage return,
processing erase and kill characters

call q->next->putp to hand line to upstream queue
call q->next->putp with DELIM message

The put proceduregeneratesthe echocharactersas promptly as possible;when the terminal module is
attachedto a devicehandler,they arecreatedduring the input interrupt from the device,becausethe put
procedureis calledasa subroutineof thehandler. On theotherhand,line-gatheringanderaseandkill pro-
cessing, which can be lengthy, are done during the service procedure at lower priority.

Connection with the Rest of the System

Althoughall thedriversfor terminalandnetworkdevices,andall protocolhandlers,wererewritten,
only minor changeswere requiredelsewherein the system. Characterdevicesand a characterdevice
switch,asdescribedby Thompson[4], arestill present.A pointerin thecharacterdeviceswitchstructure,
if null, causesthe systemto treatthe deviceasalways;this is usedfor raw disk andtape,for example. If
not null, it points to initialization informationfor the streamdevice;whena streamdeviceis opened,the
queuestructureshownin Fig. 1 is created,usingthis information,anda pointerto thestructurenamingthe
stream is saved (in the ‘‘inode table’’).

Subsequently,whenthe userprocessmakesread, write, ioctl, or close calls,presenceof a non-null
streampointerdirectsthe systemto usea setof streamroutinesto generateandreceivequeuemessages;
these are the ‘‘top-level routines’’ referred to previously.

Only a few changesin user-levelcodearenecessary,mostbecauseopeninga terminalputsit in the
‘‘very raw’’ modeshownin Fig. 1. In orderto install the terminal-processinghandler,it is necessaryfor
programs such asinit to execute the appropriateioctl call.

Interprocess Communication

As previouslydescribed,the streamI/O systemconstitutesa flexible communicationpathbetween
userprocessesanddevices.With a smalladdition,it alsoprovidesa mechanismfor interprocesscommuni-
cation. A specialdevice,the ‘‘pseudo-terminal’’ or PT, connectsprocesses.PT files comein even-odd
pairs;datawritten on the odd memberof the pair appearsas input for the evenmember,andvice versa.
The ideais not new; it appearsin Tenex[5] andits successors,for example. It is analogousto pipes,and
especiallyto namedpipes[6]. PT files differ from traditionalpipesin two ways:they arefull-duplex, and
control informationpassesthroughthemaswell asdata. They differ from the usualpseudo-terminalfiles
[2] by not havingany of the usualterminalprocessingmechanismsinherentlyattachedto them; they are
pure transmittersof control anddatamessages.PT files areadequatefor settingup a reasonablygeneral
mechanism for explicit process communication, but by themselves are not especially interesting.

A specialmessage moduleprovidesmoreintriguing possibilities. In onedirection,themessagepro-
cessortakescontrol and data messages,such as thosediscussedabove,and transformsthem into data
blocksstartingwith a headergiving the messagetype,andfollowed by the messagecontent. In the other
direction,it parsessimilarly-structureddatamessagesandcreatesthecorrespondingcontrolblocks. Figure
4 showsa configurationin which a userprocesscommunicatesthroughthe terminalmodule,a PT file pair,
andthemessagemodulewith anotheruser-levelprocessthat simulates a device driver.BecausePT files are
transparent,and the messagemodule mapsbijectively betweendevice-processdata and streamcontrol



- 7 -

device
process

mesg
pt

pt
tty in

user
process

tty out

mesg

Figure 4. Configuration for device simulator.

messages, the devicesimulatormaybecompletelyfaithful up to detailsof timing. In particular,user’sioctl
requestsaresentto thedeviceprocessandarehandledby it, evenif theyarenot understoodby theoperat-
ing system.

Theusefulnessof this setupis not somuchto simulatenewdevices,but to providewaysfor onepro-
gramto control theenvironmentof another.Pike[6] showshow thesemechanismsareusedto createmul-
tiple virtual terminalson onephysicalterminal. In anotherapplication,inter-machineconnectionsin which
a useron onecomputerlogs into anothermakeuseof themessagemodule. Herethe ioctl requestsgener-
atedby programson the remotemachinearetranslatedby this moduleinto datamessagesthat canbesent
over the network.The local callout program translates them back into terminal control commands.

Evaluation

My intent in rewriting the characterI/O systemwasto improveits structureby separatingfunctions
thathadbeenintertwined,andby allowing independentmodulesto beconnecteddynamicallyacrosswell-
definedinterfaces.I alsowantedto makethesystemfasterandsmaller. Themostdifficult partof thepro-
ject was the design of the interface.It was guided by these decisions:

1) It seemedto be necessaryfor efficiency that the objectspassedbetweenmodulesbe referencesto
blocksof data. The most importantconsequencesof this principle,andthosethat proveddeciding,
arethatdataneednot becopiedasit passesacrossa moduleinterface,andthatmanycharacterscan
be handledduring a single intermoduletransmission.Another effect, undesirablebut accepted,is
that eachmodule must be preparedto handlediscretechunksof data of unpredictablesize. For
example,a protocolthatexpectsrecordscontaining(say)an8-byteheadermustbepreparedto paste
together smaller data blocksandsplit a block containingbotha headerandfollowing data. A related,
althoughnot necessarilyconsequent,decisionwasto makethecodeassumethat thedatais address-
able.

2) I decided,with regret,that eachprocessingmodulecould not act asan independentprocesswith its
own call record. The numbersseemedagainstit: on large systemsit is necessaryto allow for as
manyas1000queues,andI sawno goodway to run this manyprocesseswithout consuminginordi-
nateamountsof storage. As a result, streamserverproceduresare not allowed to block awaiting
data,but insteadmust return after savingnecessarystatusinformation explicitly. The contortions
requiredin the codeareseldomseriousin practice,but the beautyof the schemewould increaseif
servers could be written as a simple read-write loop in the true coroutine style.

3) Thecharacteristicfeatureof thedesign� theserverandput procedures� wasthemostdifficult to work
out. I beganwith a belief that the intermoduleinterfaceshouldbe identical in the readand write
directions. Next, I observedthat a purecall model (put procedureonly) would not work; queueing
would benecessaryat somepoint. For example,if thewrite systementrycalledthroughtheterminal
processingmoduleto thedevicedriver, thedriver would needto queuecharactersinternally lestout-
put becompletelysynchronous.On theotherhand,a purequeueingmodel(serviceprocedureonly;
upstreammodulesalwaysplacetheir datain aninput queue)alsoappearedimpractical. As discussed



- 8 -

above,a module(for exampleterminal input) must often be activatedat times that dependon its
input data.

After considerablechurningof details,themodelpresentedhereemerged.In generalits performance
by various measures lives up to hopes.

The improvementin modularity is hard to measure,but seemsreal; for example,the numberof
includedheaderfiles in streammodulesdropsto aboutonehalf of thoserequiredby similar routinesin the
basesystem(4.1BSD). Certainlystreammodulesmaybecomposedmorefreely thanwerethe‘‘line disci-
plines’’ of older systems.

Theprogramtext sizeof theversionof theoperatingsystemdescribedhereis about106kilobyteson
theVAX; thebasesystemwasabout130KB. Thereductionwasachievedby rewriting thevariousdevice
driversandprotocolsandeliminating the SeventhEdition multiplexedfiles [1], most (thoughnot all) of
whosefunctionsaresubsumedby othermechanisms.On theotherhand,thedataspacehasincreased.On
a VAX 11/750 configuredfor 32 usersabout32KB are usedfor storageof the structuresfor streams,
queues,andblocks. Thetraditionalcharacterlists seemto requireless;similar systemsfrom Berkeleyand
AT&T use between 14 and 19KB.The tradeoff of program for data seems desirable.

Propertime comparisonshavenot beenmade,becauseof thedifficulty of finding a comparablecon-
figuration. On a VAX 11/750, printing a large file on a directly-connectedterminal consumes346
microsecondspercharacterusingthesystemdescribedhere;this is about10 percentslowerthanthe base
system.On theotherhand,thatsystem’sper-characterinterruptroutineis codedin assemblylanguage, and
therestof its terminalhandleris repletewith nonportableinterpolatedassemblycode;thecurrentsystemis
written completelyin C. Printing thesamefile on a terminalconnectedthrougha primitive networkinter-
face requires 136 microseconds per character, half as much astheoldernetworkroutines. Pike[7] observes
that amongthe threeimplementationsof Blit connectionsoftware,the onebasedon the streamsystemis
theonly onethatcandownloadprogramsat anythingapproachingline speedthrougha 19.2Kbpsconnec-
tion. In generalI concludethat theneworganizationneverslowscomparabletasksmuch,andthatconsid-
erable speed improvements are sometimes possible.

Although the new organizationperformswell, it hasseveralpeculiaritiesand limitations. Someof
them seem inherent, some are fixable, and some are the subject of current work.

I/O control calls turn into messagesthat requireanswersbeforea resultcanbe returnedto the user.
Sometimesthe messageultimately goesto anotheruser-levelprocessthat mayreply tardily or never. The
stream iswrite-lockeduntil thereply returns,in orderto eliminatetheneedto determinewhich processgets
which reply. A timeoutbreaksthe lock, so thereis anunjustifiederror returnif a reply is late,anda long
lockup period if oneis lost. Theproblemcanbeamelioratedby working harderon it, but it typifies thedif-
ficulties that turn up when direct calls are replaced by message-passing schemes.

Severalodditiesappearbecausetime spentin serverroutinescannotbe assignedto any particular
useror process. It is impossible,for example,for devicesto supportprivileged ioctl calls, becausethe
devicehasno ideawho generatedthe message.Accountingandschedulingbecomelessaccurate;a short
censusof severalsystemsshowedthat between4 and8 percentof non-idleCPU time wasbeingspentin
serverroutines. Finally, theanonymityof serverprocessingmostcertainlymakesit moredifficult to mea-
sure the performance of the new I/O system.

In its currentform thestreamI/O systemis purelydata-driven.That is, datais presentedby a user’s
write call, andpassesthroughto thedevice;conversely,dataappearsunbiddenfrom a deviceandpassesto
thetop level,whereit is pickedup by read calls. Whereverpossibleflow controlthrottlesdownfastgener-
atorsof data,but nowhereexceptat the consumerend of a streamis thereknowledgeof preciselyhow
muchdatais desired. Considera commandto executepossibly interactiveprogramon anothermachine
connectedby a stream. The simplestsuchcommandsetsup the connectionand invokesthe remotepro-
gram,andthencopiescharactersfrom its own standardinput to thestream,andfrom thestreamto its stan-
dardoutput. Theschemeis adequatein practice,but breakswhentheusertypesmorethantheremotepro-
gram expects.For example, if theremoteprogramreadsno input at all, anytyped-aheadcharactersaresent
to the remotesystemandlost. This demonstratesa problem,but I know of no solution insidethe stream
I/O mechanism itself; other ideas will have to be applied.

Streamsarelinearconnections;by themselves,theysupportno notionof multiplexing, fan-in or fan-



- 9 -

out. Exceptat the endsof a stream,eachinvocationof a modulehasa unique‘‘next’’ and ‘‘previous’’
module. Two locally-importantapplicationsof streamstestify to the importanceof multiplexing: Blit ter-
minal connections,wherethe multiplexing is donewell, thoughat someperformancecost,by a userpro-
gram,andremoteexecutionof commandsovera network,whereit is desired,but not now easy,to separate
thestandardoutputfrom erroroutput. It seemslikely thata generalmultiplexingmechanismcouldhelp in
both cases, but again, I do not yet know how to design it.

Although thecurrentdesignprovideselegantmeansfor controlling the semanticsof communication
channelsalreadyopened,it lacks generalways of establishingchannelsbetweenprocesses.The PT files
describedabove are just fine for Blit layers, and work adequatelyfor handling a few administrator-
controlledclient-serverrelationships.(Yes,we havemulti-machinemazewar.)Nevertheless,betternam-
ing mechanisms are called for.

In spiteof theselimitations,thestreamI/O systemworkswell. Its aim wasto improvedesignrather
thanto add features, in the belief that with proper design, the features come cheaply.This approach is ardu-
ous, but continues to succeed.

References

1. Unix Programmers’s Manual, Seventh Edition,Bell Laboratories, Murray Hill, NJ, (January, 1979).

2. Unix Programmer’sManual, Virtual VAX-11 Version, University of California, Berkeley (June
1981).

3. A. G. Fraser,‘‘Datakit--A ModularNetworkfor SynchronousandAsynchronousTraffic,’’ Proc. Int.
Conf. on Communication,Boston, MA (June 1979).

4. K. Thompson,‘‘The Unix Time-sharingSystem--UnixImplementation,’’B.S.T.J. 57 No 6, (July-
Aug 1978), pp. 1931-1946.

5. D.G. Bobrow, J.D. Burchfiel, D.L. Murphy, and R.S Tomlinson, ‘‘Tenex--a PagedTime Sharing
System for the PDP-10,’’ C. ACM15 No. 3, (March 1972), pp. 135-143.

6. T.A. Dolotta,S.B. Olsson,,andA.G.Petrucelli,Unix User’sManual,Release3.0, Bell Laboratories,
Murray Hill, NJ (June 1980).

7. R. Pike, ‘The Blit: A Multiplexed GraphicsTerminal,’’ AT&T Tech.J. 63 No. 8 Part 2, October
1984.


