

Android Contact Tracing API

Preliminary - Subject to Modi�cation and Extension

April 2020

Information subject to copyright. All rights reserved. Version 0.4

Android Contact Tracing API

/**

 * Starts BLE broadcasts and scanning based on the defined protocol.

 *

 * If not previously used, this shows a user dialog for consent to start contact

 * tracing and get permission.

 *

 * Calls back when data is to be pushed or pulled from the client, see

 * ContactTracingCallback.

 *

 * Callers need to re-invoke this after each device restart, providing a new

 * callback PendingIntent.

 */

Task < Status > startContactTracing (PendingIntent contactTracingCallback);

@IntDef({...})

@interface Status {

 int SUCCESS = 0;

 int FAILED_REJECTED_OPT_IN = 1;

 int FAILED_SERVICE_DISABLED = 2;

 int FAILED_BLUETOOTH_SCANNING_DISABLED = 3;

 int FAILED_TEMPORARILY_DISABLED = 4;

 int FAILED_INSUFFICENT_STORAGE = 5 ;

 int FAILED_INTERNAL = 6 ;

}

/**

 * Handles an intent which was invoked via the contactTracingCallback and

 * calls the corresponding ContactTracingCallback methods.

 */

void handleIntent (Intent intentCallback , ContactTracingCallback callback);

interface ContactTracingCallback {

 // Notifies the client that the user has been exposed and they should

 // be warned by the app of possible exposure.

 void onContact() ;

 // Requests client to upload the provided daily tracing keys to their server for

 // distribution after the other user’s client receives the

 // requestProvideDiagnosisKeys callback. The keys provided here will be at

 // least 24 hours old.

 //

 // In order to be whitelisted to use this API, apps will be required to timestamp

Information subject to copyright. All rights reserved. Version 0.4

 // and cryptographically sign the set of keys before delivery to the server

 // with the signature of an authorized medical authority.

 void requestUploadDailyTracingKeys(List < DailyTracing Key > keys) ;

 // Requests client to provide a list of all diagnosis keys from the server.

 // This should be done by invoking provideDiagnosisKeys().

 void requestProvideDiagnosisKeys() ;

}

class DailyTracing Key {

 byte [] key ;

 Date date ; // Day-level granularity.

}

/**

 * Disables advertising and scanning related to contact tracing. Contents of the

 * database and keys will remain.

 *

 * If the client app has been uninstalled by the user, this will be automatically

 * invoked and the database and keys will be wiped from the device.

 */

Task < Status > stopContactTracing ();

/**

 * Indicates whether contact tracing is currently running for the

 * requesting app.

 */

Task < Status > isContactTracingEnabled ();

/**

 * Flags daily tracing keys as to be stored on the server.

 *

 * This should only be done after proper verification is performed on the

 * client side that the user is diagnosed positive.

 *

 * Calling this will invoke the

 * ContactTracingCallback.requestUploadDailyTracingKeys callback

 * provided via startContactTracing at some point in the future. Provided keys

 * should be uploaded to the server and distributed to other users.

 *

 * This shows a user dialog for sharing and uploading data to the server.

 * The status will also flip back off again after 14 days; in other words,

 * the client will stop receiving requestUploadDailyTracingKeys

 * callbacks after that time.

Information subject to copyright. All rights reserved. Version 0.4

 *

 * Only 14 days of history are available.

 */

Task < Status > startSharingDailyTracingKeys ();

/**

 * Provides a list of diagnosis keys for contact checking. The keys are to be

 * provided by a centralized service (e.g. synced from the server).

 *

 * When invoked after the requestProvideDiagnosisKeys callback, this triggers a

 * recalculation of contact status which can be obtained via hasContact()

 * after the calculation has finished.

 *

 * Should be called with a maximum of N keys at a time.

 */

Task < Status > provideDiagnosisKeys (List < DailyTracingKey > keys);

/**

 * The maximum number of keys to pass into provideDiagnosisKeys at any given

 * time.

 */

int getMaxDiagnosisKeys ();

/**

 * Check if this user has come into contact with a provided key. Contact

 * calculation happens daily.

 */

Task < Boolean > hasContact ();

/**

 * Check if this user has come into contact with a provided key. Contact

 * calculation happens daily.

 */

Task < List < ContactInfo >> getContactInformation ();

interface ContactInfo {

 /** Day-level resolution that the contact occurred. */

 Date contactDate ();

 /** Length of contact in 5 minute increments. */

 int duration ();

}

Information subject to copyright. All rights reserved. Version 0.4

