& Google

Android Contact Tracing API

Preliminary - Subject to Modification and Extension

April 2020

Information subject to copyright. All rights reserved. Version 0.4



Android Contact Tracing API

~
*

* X X X X X X X ¥ * ¥

Starts BLE broadcasts and scanning based on the defined protocol.

If not previously used, this shows a user dialog for consent to start contact
tracing and get permission.

Calls back when data is to be pushed or pulled from the client, see
ContactTracingCallback.

Callers need to re-invoke this after each device restart, providing a new
callback PendingIntent.

*/
Task<Status> startContactTracing(PendingIntent contactTracingCallback);

@IntDef({...})

@interface Status {
int SUCCESS = ©;
int FAILED_REJECTED_OPT_IN = 1;
int FAILED_SERVICE_DISABLED = 2;
int FAILED_BLUETOOTH_SCANNING DISABLED = 3;
int FAILED_TEMPORARILY_DISABLED = 4;
int FAILED_INSUFFICENT_STORAGE = 5;
int FAILED_INTERNAL = 6;

/**

* Handles an intent which was invoked via the contactTracingCallback and
* calls the corresponding ContactTracingCallback methods.

*/

void handleIntent(Intent intentCallback, ContactTracingCallback callback);

interface ContactTracingCallback {
// Notifies the client that the user has been exposed and they should
// be warned by the app of possible exposure.
void onContact();

// Requests client to upload the provided daily tracing keys to their server for
// distribution after the other user’s client receives the

// requestProvideDiagnosisKeys callback. The keys provided here will be at

// least 24 hours old.

//

// In order to be whitelisted to use this API, apps will be required to timestamp

Information subject to copyright. All rights reserved. Version 0.4



// and cryptographically sign the set of keys before delivery to the server
// with the signature of an authorized medical authority.
void requestUploadDailyTracingKeys(List<DailyTracingKey> keys);

// Requests client to provide a list of all diagnosis keys from the server.
// This should be done by invoking provideDiagnosisKeys().
void requestProvideDiagnosisKeys();

class DailyTracingKey {

byte[] key;

Date date; // Day-level granularity.
}

/**
Disables advertising and scanning related to contact tracing. Contents of the
database and keys will remain.

If the client app has been uninstalled by the user, this will be automatically
invoked and the database and keys will be wiped from the device.

* ¥ ¥ X ¥

*/
Task<Status> stopContactTracing();

/**
* Indicates whether contact tracing is currently running for the
* requesting app.
*/

Task<Status> isContactTracingEnabled();

Flags daily tracing keys as to be stored on the server.

This should only be done after proper verification is performed on the
client side that the user is diagnosed positive.

Calling this will invoke the
ContactTracingCallback.requestUploadDailyTracingKeys callback

provided via startContactTracing at some point in the future. Provided keys
should be uploaded to the server and distributed to other users.

This shows a user dialog for sharing and uploading data to the server.
The status will also flip back off again after 14 days; in other words,
the client will stop receiving requestUploadDailyTracingKeys

callbacks after that time.

Information subject to copyright. All rights reserved. Version 0.4



*
* Only 14 days of history are available.
*/
Task<Status> startSharingDailyTracingKeys();

/**
* Provides a list of diagnosis keys for contact checking. The keys are to be
provided by a centralized service (e.g. synced from the server).

When invoked after the requestProvideDiagnosisKeys callback, this triggers a
recalculation of contact status which can be obtained via hasContact()
after the calculation has finished.

* X ¥ X ¥ * ¥

Should be called with a maximum of N keys at a time.
*/
Task<Status> provideDiagnosisKeys(List<DailyTracingKey> keys);

/**

* The maximum number of keys to pass into provideDiagnosisKeys at any given
* time.

*/
int getMaxDiagnosisKeys();

/**

* Check if this user has come into contact with a provided key. Contact
* calculation happens daily.

*/

Task<Boolean> hasContact();

[**
* Check if this user has come into contact with a provided key. Contact
* calculation happens daily.

*/
Task<List<ContactInfo>> getContactInformation();

interface ContactInfo {
/** Day-level resolution that the contact occurred. */
Date contactDate();

/** Length of contact in 5 minute increments. */

int duration();

}

Information subject to copyright. All rights reserved. Version 0.4



