
Design and Implementation of an Efficient Stack Machine

Martin Schoeberl
JOP.design

Vienna, Austria
martin@jopdesign.com

Abstract

Although virtually every processor today uses a load-
store register architecture, stack architectures attractatten-
tion again due to the success of Java. The intermediate lan-
guage of Java, the Java bytecodes, is stack based and there-
fore a hardware realization of the Java Virtual Machine
(JVM), a Java processor, is also stack based. In this pa-
per two different architectures, found in Java processors,
are presented. Detailed analysis of the JVM access patterns
to the stack prove that a simpler and faster solution is pos-
sible. The proposed solution is a stack with two levels of
on-chip cache.

1. Introduction

The concept of a stack has a long tradition, but stack ma-
chines no longer form part of mainstream computers. Al-
though stacks are no longer used for expression evaluation,
they are still used for the context save on a function call. A
niche language, Forth [5], is stack-based and known as an
efficient language for controller applications. Some hard-
ware implementations of the Forth abstract machine do ex-
ist. These Forth processors are stack machines.

The Java programming language defines not only the
language but also a binary representation of the program
and an abstract machine, the JVM, to execute this binary.
The JVM is similar to the Forth abstract machine in that it
is also a stack machine. However, the usage of the stack dif-
fers from Forth in such a way that a Forth processor is not
an ideal hardware platform to execute Java programs.

In this paper, the stack usage in the JVM is analyzed.
We will see that, besides the access to the top elements of
the stack, an additional access path to a random element of
the stack is necessary for an efficient implementation of the
JVM. Two architectures will be presented for this mixed ac-
cess mode of the stack. Both architectures are used in Java
processors. However, we will also show that the JVM does
not need a full three-port access to the stack as implemented

in the two architectures. This allows for a simple and more
elegant design of the stack for a Java processor. This pro-
posed architecture will then be compared with the other two
at the end of this paper.

2. Java Computing Model

The Java Virtual Machine (JVM) is not a pure stack ma-
chine in the sense of, for instance, the stack model in Forth.
The JVM operates on a LIFO stack as itsoperand stack.
The JVM supplies instructions to load values on the operand
stack, and other instructions take their operands from the
stack, operate on them and push the result back onto the
stack. For example, theiadd instruction pops two values
from the stack and pushes the result back onto the stack.
These instructions are the stack machine’s typical zero-
address instructions. The maximum depth of this operand
stack is known at compile time. In typical Java programs,
the maximum depth is very small. To illustrate the opera-
tion notation of the JVM, Table 1 shows the evaluation of an
expression for a stack machine notation and the JVM byte-
codes.

A = B + C * D

Stack JVM

push B iload1
push C iload2
push D iload3
* imul
+ iadd
pop A istore0

Table 1. Standard stack notation and the corre-
sponding JVM instructions

Instruction iload n loads an integer value from a local
variable at positionn and pushes the value on TOS. The



JVM contains another memory area for method local data.
This area is known aslocal variables. Primitive type val-
ues, such as integer and float, and references to objects are
stored in these local variables. Arrays and objects cannot
be allocated in a local variable, as in C++. They have to
be placed on the heap. Different instructions transfer data
between the operand stack and the local variables. Access
to the first four elements is optimized with dedicated sin-
gle byte instructions, while up to 256 local variables are ac-
cessed with a two-byte instruction and, with thewide mod-
ifier, the area can contain up to 65536 values.

These local variables are very similar to registers and it
appears that some of these locals can be mapped to the reg-
isters of a general purpose CPU or implemented as regis-
ters in a Java processor. On method invocation, local vari-
ables could be saved in a frame on a stack, different from
the operand stack, together with the return address, in much
the same way as in C on a typical processor. This would re-
sult in the following memory hierarchy:

• On-chip hardware stack for ALU operations

• A small register file for frequently-accessed variables

• A method stack in main memory containing the return
address and additional local variables

However, the semantics of method invocation suggest a dif-
ferent model. The arguments of a method are pushed on
the operand stack. In the invoked method, these arguments
are not on the operand stack but are instead accessed as the
first variables in the local variable area. Thereal method lo-
cal variables are placed at higher indices. Figure 1 gives an
example of the argument passing mechanism in the JVM.
These arguments could be copied to the local variable area
of the invoked method. To avoid this memory transfer, the
entire variable area (the argumentsand the variables of the
method) is allocated on the operand stack. However, in the
invoked method, the arguments are buried deep in the stack.

This asymmetry in the argument handling prohibits pass-
ing down parameters through multiple levels of subroutine
calls, as in Forth. Therefore, an extra stack for return ad-
dresses is of no use for the JVM. This single stack now con-
tains the following items in a frame per method:

• The local variable area

• Saved context of the caller

• The operand stack

A possible implementation of this layout is shown in Fig-
ure 2. A method with two arguments,arg 1 andarg 2 (arg 0
is thethis pointer), is invoked in this example. The invoked
methodseesthe arguments asvar 1 andvar 2. var 3 is the
only local variable of the method. SP is a pointer to the top
of stack and VP points to the start of the variable area.

var_2
var_1
var_0

Operand stack

arg_2
arg_1
arg_0

var_2
var_1
var_0

Context of
Caller

Operand stack

var_3
var_2
var_1
var_0

Context of
Caller

VP

SP

VP

Old frame

SP

Context of
Caller

Operand stack

... ...

...

Figure 2. Stack change on method invocation

3. Access Pattern on the Java Stack

The pipelined architecture of a Java processor executes
basic instructions in a single cycle. A stack that contains
the operand stackand the local variables results in follow-
ing access patterns:

Stack Operation: Read of the two top elements, operate
on them and push back the result on the top of the
stack. The pipeline stages for this operation are:
value1 ← stack[sp], value2 ← stack[sp-1]
result ← value1 op value2, sp ← sp-1
stack[sp] ← result

Variable Load: Read of a data element deeper down in the
stack, relative to a variable base address pointer (VP),
and push this data on the top of the stack. This opera-
tion needs two pipeline stages:
value ← stack[vp+offset], sp ← sp+1
stack[sp] ← value

Variable Store: Pop the top element of the stack and write
it in the variable relative to the variable base address:
value ← stack[sp]
stack[vp+offset] ← value, sp ← sp-1

For single cycle execution of these operations, a three-port
memory or register file (two read ports and one write port)
is necessary.

4. Different Realizations of a Stack Cache

As the stack is a heavily accessed memory region, the
stack — or part of it — has to be placed in the upper level
of the memory hierarchy. This part of the stack is referred
to asstack cachein this paper. As described in [3], a typi-



int val = foo(1, 2);
...
public int foo(int a, int b) {

int c = 1;
return a+b+c;

}

Compiled JVM bytecode instructions of the above Java program:

The invokation sequence:
aload_0 // Push the obejct reference
iconst_1 // and the parameter on the
iconst_2 // operand stack.
invokevirtual #2 // Invoke method foo:(II)I.
istore_1 // Store result in local variable.

public int foo(int,int):
iconst_1 // The constant is stored in a method
istore_3 // local variable (at position 3).
iload_1 // Arguments are accessed as locals
iload_2 // and pushed on the operand stack.
iadd // Operation on the operand stack.
iload_3 // Push the variable c on the operand stack.
iadd
ireturn // Return value is on top of stack.

Figure 1. Example of parameter passing and access in the JVM

cal memory hierarchy contains the following elements, with
increasing access time and size:

• CPU register

• On-chip cache memory

• Off-chip cache memory

• Main memory

• Magnetic disk for virtual memory

For a stack cache, a register file is the solution with the
shortest access time. However, in order to store more than
a few elements in the cache, an on-chip memory realization
can provide a larger cache. Both variants have been used
and are described below.

4.1. The Register File as a Stack Cache

An example of a Java processor that uses a register file is
Sun’s picoJava [9]. It contains 64 registers, organized as a
circular buffer. To compensate for thissmallstack cache, an
automatic spill and fill circuit needs another read/write port
to the register file. aJile’s JEMCore [2] is a direct-execution
Java processor core that contains 24 registers. Only six of
them are used to cache the top elements of the stack. With

Basic function Gate count

D-Flip-Flop 5
2:1 MUX 3
4:1 MUX 5
8:1 MUX 9
SRAM Bit 1.5

Table 2. Simplified gate count for basic functions

this small register count, local variables are not part of the
cache. The Ignite [6] (formerly known as PSC1000) is a
stack processor, originally designed as a Forth processor
and now promoted as a Java processor, has an operand stack
that contains 18 registers with automatic spill and fill.

A basic pipeline for a stack processor with a register file
contains the following stages:

1. IF – instruction fetch

2. ID – instruction decode

3. EX – read register file and execute

4. WB – write result back to register file

With this pipeline structure, a single data-forwarding
path between WB and EX is necessary. The ALU with the



R0

R1

R2

R15

ALU

Result
buffer

Figure 3. A stack cache with registers

register file (with a size of 16, a common size for RISC pro-
cessors) and the bypass unit are shown in Figure 3. In Ta-
ble 3 the hardware resources of this type of stack cache is
approximated, using the values given in Table 2 (a MUX
not found in this table is assumed to use combinations of
the basic types; e.g. two 8:1 and one 2:1 for a 16:1). An ex-
perimental evaluation of this architecture in an FPGA is de-
scribed in Section 6.

Function block Basic function Gate count

Register File 512 D-Flip-Flops 2,560
Read MUX 2x32 16:1 MUX 1,344
Forward MUX 32 2:1 MUX 96
ALU buffer 32 D-Flip-Flops 160

Total 4,160

Table 3. Estimated gate count for a stack cache
with registers

4.2. On-chip Memory as Stack Cache

Using SRAM on the chip provides alarge stack cache
(e.g. 128 entries). However, as we have seen in Section 3,
a three-port memory and one additional pipeline stage are
necessary:

1. IF – instruction fetch

2. ID – instruction decode

3. RD – memory read

4. EX – execute

5. WB – write result back to memory

With this pipeline structure, two data forwarding paths are
necessary. The resulting architecture is shown in Figure 4
and a gate count estimate is provided in Table 4. This ver-
sion needs 70% more resources than the first one, but pro-
vides an eight times larger stack cache.

Function block Basic function Gate count

Stack RAM e.g. 128x32 Bits 6,144
Port buffer 2x32 D-Flip-Flops 320
Forward MUX 32 2:1 and 3:1 MUX 288
ALU buffer 2x32 D-Flip-Flops 320

Total 7,072

Table 4. Estimated gate count for a stack cache
with on-chip RAM

Example designs that use this kind of stack cache are (i)
Komodo [10], a Java processor intended as a basis for re-
search on multithreaded real-time scheduling, and (ii) Fem-
toJava [4], a research project to build an application specific
Java processor. Both designs avoid memory doubling by se-
rializing the two reads. This serialization results in a mini-
mum of a two clock cycles execution time for basic instruc-
tions or halves the clock frequency of the whole pipeline.

5. A Two-Level Stack Cache

In this section, we will discuss access patterns of the
JVM and their implication on the functional units of the
pipeline. A faster and smaller architecture is proposed for
the stack cache of a Java processor.



ALU

Result
buffer

Forward
buffer

Read
Addr. 1

Read
Addr. 2

Write
Addr.

Write
Data

Stack
RAM

Port 2
buffer

Port 1
buffer

Figure 4. A stack cache with on-chip RAM

5.1. JVM Stack Access Revised

If we analyze the JVM’s access patterns to the stack in
more detail, we can see that a two-port read is only per-
formed with the two top elements of the stack. All other op-
erations with elements deeper in the stack, local variables
load and store, only need one read port. If we only imple-
ment the two top elements of the stack in registers, we can
use a standard on-chip RAM with one read and one write
port.

We will show that all operations can be performed with
this configuration. LetA be the top-of-stack,B the element
below top-of-stack. The memory that serves as the second
level cache is represented by the arraysm. Two indices in
this array are used:p points to the logical third element of
the stack and changes as the stack grows or shrinks,v points
to the base of the local variables area in the stack andn is
the address offset of a variable.op is a two operand stack
operation with a single result (i.e. a typical ALU operation).

Case 1: ALU operation
A← A op B
B← sm[p]
p← p – 1
The two operands are provided by the two top level
registers. A single read access fromsmis necessary to
fill B with a new value.

Case 2: Variable load (Push)
A← sm[v+n]
B← A
sm[p+1]← B
p← p + 1
One read access fromsmis necessary for the variable
read. The former TOS value moves down toB and the
data previously inB is written tosm.

Case 3: Variable store (Pop)
sm[v+n] ← A
A← B
B← sm[p]
p← p - 1
The TOS value is written tosm. A is filled with B and
B is filled in an identical manner to Case 1, needing a
single read access fromsm.

We can see that all three basic operations can be performed
with a stack memory with one read and one write port. As-
suming a memory is used that can handle concurrent read
and write access, there is no structural access conflict be-
tweenA, B andsm. That means that all operations can be
performed concurrently in a single cycle.

As we can see in Figure 2 the operand stack and the lo-
cal variables area are distinct regions of the stack. A con-
current read from and write to the stack is only performed
on a variable load or store. When the read is from the lo-
cal variables area the write goes to the operand area; a read
from the operand area is concurrent with a write to the lo-
cal variables area. Therefore there is no concurrent read and
write to the same location insm. There is no constraint on
the read-during-write behavior of the memory (old data, un-
defined or new data), which simplifies the memory design.
In a design where read and write-back are located in differ-
ent pipeline stages, as in the architectures described above,
either the memory must provide the new data on a read-
during-write, or external forward logic is necessary.

From the three cases described, we can derive the mem-
ory addresses for the read and write port of the memory, as
shown in Table 5.

5.2. The Datapath

The architecture of the two-level stack cache can be seen



ALU
Read
Addr.

Write
Addr.

Write
Data

Stack
RAM

A

B

Figure 5. Two-level stack cache

Read address Write address

p p+1
v+n v+n

Table 5. Memory addresses

in Figure 5. RegisterA represents the top-of-stack and reg-
isterB the data below the top-of-stack. ALU operations are
performed with these two registers and the result is placed
in A. During such an ALU operation,B is filled with new
data from the stack RAM. A new value from the local vari-
able area is loaded directly from the stack RAM intoA. The
data previously inA is moved toB and the data fromB is
spilled to the stack RAM.A is stored in the stack RAM on
a store instruction to the local variable. The data fromB is
moved toA andB is filled with a new value from the stack
RAM. All these operations are performed concurrently in
one cycle.

With this architecture, the pipeline can be reduced to
three stages:

1. IF – instruction fetch

2. ID – instruction decode

3. EX – execute, load or store

The estimated resource usage of this two-level stack cache
architecture is given in Table 6. It can be seen that this
architecture is roughly as complex as the solution given
above (about 5% less gates). However, the reduced com-
plexity with the two-port RAM instead of a three port RAM
is not included in the table. The critical path through the
ALU contains only one 2:1 MUX to registerA in this solu-
tion, rather than one 3:1 MUX in one ALU path and one 2:1
MUX in the other ALU path. As no data forwarding logic
is necessary, the decoding logic is also simpler.

Function block Basic function Gate count

Stack RAM e. g. 128x32 Bits 6,144
TOS, TOS-1 buffer 2x32 D-Flip-Flops 320
Three MUX 3x32 2:1 MUX 288

Total 6,752

Table 6. Estimated gate count for the two-level
stack cache

5.3. Data Forwarding — A Non Issue

Data dependencies in the instruction stream result in the
so-calleddata hazards[3] in the pipeline. Data forwarding
is a technique that moves data from a later pipeline stage
back to an earlier one to solve this problem. The termfor-
ward is correct in the temporal domain as data is transferred
to an instruction in the future. However, it is misleading in
the structural domain as the forward direction is towards the
last pipeline stage for an instruction.

As the probability of data dependency is very high in a
stack-based architecture, one would expect several data for-
warding paths to be necessary. However, in the two-level ar-
chitecture proposed, with its resulting three-stage pipeline,
no data hazards will occur and no data forwarding is there-
fore necessary. This simplifies the decoding stage and re-
duces the number of multiplexers in the execution path. We
will show that none of the three data hazard types [3] are an
issue in this architecture. With instructionsi and j, wherei
is issued beforej, the data hazard types are:

Read after write: jreads a source beforei writes it. This
is the most common type of hazard and, in the architectures
described above, is solved by using the ALU buffers and the
forwarding multiplexer in the ALU datapath. On a stack ar-
chitecture, write takes three forms:



• Implicit write of TOS during an ALU operation

• Write to the TOS during a load instruction

• Write to an arbitrary entry of the stack with a store in-
struction

A read also occurs in three different forms:

• Read two top values from the stack for an ALU opera-
tion

• Read TOS for a store instruction

• Read an arbitrary entry of the stack with the load in-
struction

With the two top elements of the stack as discrete registers,
these values are read, operated on and written back in the
same cycle. No read that depends on TOS or TOS-1 suffers
from a data hazard. Read and write access to a local vari-
able is also performed in the same pipeline stage. Thus, the
read after write order is not affected. However, there is also
an additional hidden read and write - the fill and spill of reg-
ister B:

• B fill: B is written during an ALU operation and on a
variable store. During an ALU operation, the operands
are the values fromA and the old value fromB. The
new value forB is read from the stack memory and
does not depend on the new value ofA. During a vari-
able store operation,A is written to the stack memory
and does not depend onB. The new value forB is also
read from the stack memory and it is not obvious that
this value does not depend on the written value. How-
ever, the variable area and the operand stack are dis-
tinct areas in the stack (this changes only on method
invocation and return), guaranteeing that concurrent
read/write access does not produce a data hazard.

• B spill: B is read on a load operation. The new value of
B is the old value ofA and does not therefore depend
on the stack memory read.B is written to the stack. For
the read value from the stack memory that goes toA,
the argument concerning the distinct stack areas in the
case ofB fill described above still applies.

Write after read: jwrites a destination before it is read by
i. This cannot take place as all reads and writes are per-
formed in the same pipeline stage keeping the instruction
order.

Write after write: jwrites an operand before it is written by
i. This hazard is not present in this architecture as all writes
are performed in the same pipeline stage.

6. Resource Usage Compared

The three architectures described above are implemented
in an FPGA (Altera’s EP1C6Q240C6 [1]). The three-port

memory for the second solution is emulated with two em-
bedded memory blocks. The ALU for this comparison is
kept simple with the following functions: NOP, ADD, SUB,
POP, AND, OR, XOR and load external data. The load of
external data is necessary in order to prevent the synthesizer
from optimizing away the whole design. A real implemen-
tation of an ALU for a Java processor [7] is a little bit more
complex with a barrel shifter and additional load pathes. In
order to gain the maximum operating frequency for the de-
sign, the testbed for this architecture contains registersfor
the external data, the RAM address busses, and the control
and select signals. Table 7 shows the resource usage and
maximum operation frequency of the three different archi-
tectures.

LC stands for ‘Logic Cell’ and is the basic element in an
FPGA: a 4-bit lookup table with a register. The LC count
in the table includes the register count. The ALU alone
without any stack cache needs 194 LCs. In the first line,
the testbed is combined with the ALU without any stack
caching, as a reference design. With this configuration, we
can obtain the maximum possible speed of the registered
ALU in this FPGA technology, in this case an operating fre-
quency of 237 MHz or a 4.2 ns delay. This value is an up-
per bound of the system frequency. Every pipelined archi-
tecture needs one or more multiplexer in the ALU path, ei-
ther for data forwarding or for operand selection, resulting
in a longer delay. The fourth and fifth columns represent
the resource usage of the cache logic without the testbed
and ALU. The last column shows the effective cache size in
data words.

The version with the 16 registers was synthesized with
two different synthesizer settings. In the first setting, the
register file is implemented with discrete registers while,
with a different setting, the register file is automaticallyim-
plemented in two 32-bits embedded RAM blocks. Two dif-
ferent RAM blocks are necessary to provide two read ports
and one write port. In both versions, the delay time to read
the register file (delay through the 16:1 MUX of 4.9 ns or
RAM access time of 4.6 ns) is in the same order as the de-
lay time through the ALU, resulting in a system frequency
of half the theoretical frequency of that with the ALU alone.
As the structure of the version with the embedded RAM
block is very similar with the SRAM cache, only the ver-
sion with the discrete registers is shown in Table 7.

The stack cache with a RAM and registers on the RAM
output (the additional pipeline stage) performs better than
the first solution. However, the 3:1 MUX in the critical path
still adds 2.3 ns to the delay time. Compared with the pro-
posed solution (in the last line), we see that double the
amount of RAM is needed for the two read ports.

The two-level stack cache solution performs at 213 MHz,
i.e. almost the theoretical system frequency (in practice,
about 10% slower). Only a 2:1 MUX is added to the crit-



Design Total Cache Memory fmax Size
LCs Registers LCs Registers [bit] [MHz] [word]

Testbed with ALU 261 166 - - - 237 -
16 register cache 968 657 707 491 0 110 16
SRAM cache 372 185 111 19 8,192 153 128
Two-level cache 373 184 112 18 4,096 213 130

Table 7. Resource and performance compared

ical path. The single read port memory only needs half the
number of memory bits of the other two solutions.

7. Conclusion

In this paper, the stack architecture of the JVM was ana-
lyzed. We have seen that the JVM is different from the clas-
sical stack architecture. The JVM uses the stack both as an
operand stackand as the storage place for local variables.
Local variables are placed in the stack at adeeperposition.
To load and store these variables, a random access path to
the stack is necessary. As the stack is the most frequent ac-
cessed memory area in the JVM, caching of this memory is
mandatory for a high-performing Java processor.

A common solution, found in a number of different Java
processors, is to implement this stack cache as a standard
three-port register file with additional support to address
this register file in a stack like manner. The architectures
presented above differ in the realization of the register file:
as a discrete register or in on-chip memory. Implementing
the stack cache as discrete registers is very expensive. A
three-port memory is also an expensive option for an ASIC
and unusual in an FPGA. It can be simulated in an FPGA by
two memories with a single read and write port. The write
data is written in both memory blocks and each memory
block provides a different read port. However, this also dou-
bles the amount of memory.

Detailed analysis of the access patterns to the stack
showed that only the two top elements of the stack are ac-
cessed in a single cycle. Given this fact, the proposed archi-
tecture uses registers to cache only the two top elements of
the stack. The next level of the stack cache is provided by
a simple on-chip memory. The memory automatically spills
and fills the second register. Implementing the two top el-
ements of the stack as fixed registers, instead of elements
that are indexed by a stack pointer, also greatly simplifies
the overall pipeline. This architecture is successfully imple-
mented in a Java Optimized Processor (JOP) [8].

The proposed stack architecture has the following advan-
tages: (i) Simpler cache memory results in having half the
memory usage of the other solutions in an FPGA. (ii) Mini-
mal impact in the raw speed of the ALU. Operates at almost
the theoretical maximum system frequency of the ALU. (iii)

Single read, execute and write-back pipeline stage resultsin
an overall 3-stage pipeline processor design. (iv) No data
forwarding is necessary, which simplifies instruction de-
code logic and reduces the multiplexer count in the criti-
cal path.

References

[1] A. Corporation. Cyclone FPGA Family Data Sheet, ver. 1.2,
April 2003.

[2] D. Hardin. Real-Time Objects on the Bare Metal: An Effi-
cient Hardware Realization of the JavaTM Virtual Machine.
In Proceedings of the Fourth International Symposium on
Object-Oriented Real-Time Distributed Computing, page 53.
IEEE Computer Society, 2001.

[3] J. Hennessy and D. Patterson.Computer Architecture: A
Quantitative Approach, 3rd ed.Morgan Kaufmann Publish-
ers Inc., Palo Alto, CA 94303, 2002.

[4] S. Ito, L. Carro, and R. Jacobi. Making Java work for micro-
controller applications.IEEE Design & Test of Computers,
18(5):100–110, 2001.

[5] P. Koopman.Stack Computers: The New Wave. Ellis Hor-
wood, 1989. Out of print, now available over the internet.

[6] PTSC. Ignite processor brochure, rev 1.0. Available at
http://www.ptsc.com.

[7] M. Schoeberl. JOP: A Java optimized processor. In
R. Meersman, Z. Tari, and D. Schmidt, editors,On the Move
to Meaningful Internet Systems 2003: Workshop on Java
Technologies for Real-Time and Embedded Systems (JTRES
2003), volume 2889 ofLecture Notes in Computer Science,
pages 346–359, Catania, Italy, November 2003. Springer.

[8] M. Schoeberl. Java technology in an FPGA. InProceed-
ings of the International Conference on Field-Programmable
Logic and its applications (FPL 2004), Antwerp, Belgium,
August 2004.

[9] Sun. picoJava-II Microarchitecture Guide. Sun Microsys-
tems, March 1999.

[10] R. Zulauf. Entwurf eines Java-Mikrocontrollers und proto-
typische Implementierung auf einem FPGA. Master’s thesis,
University of Karlsruhe, 2000.


	Introduction
	Java Computing Model
	Access Pattern on the Java Stack
	Different Realizations of a Stack Cache
	The Register File as a Stack Cache
	On-chip Memory as Stack Cache

	A Two-Level Stack Cache
	JVM Stack Access Revised
	The Datapath
	Data Forwarding --- A Non Issue

	Resource Usage Compared
	Conclusion

