Baugh-Wooley Multiplier

1 Objectives

- Understand the Baugh-Wooley multiplication algorithm for 2's complement data.
- Design a 2's complement multiplier based on the Baugh-Wooley algorithm.
- Employ hierarchical design technique.
- Simulate the multiplier performance.

2 Introduction

We start by explaining the Baugh-Wooley multiplication algorithm.

2.1 Multiplying two 2's compliment numbers

The Baugh-Wooley multiplication algorithm is an efficient way to handle the sign bits. This technique has been developed in order to design regular multipliers, suited for 2's-complement numbers. Let us consider two n-bit numbers, A and B, to be multiplied. A and B can be represented as

$$A = -a_{n-1}2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i \tag{1}$$

$$B = -b_{n-1}2^{n-1} + \sum_{i=0}^{n-2} b_i 2^i$$
 (2)

Where the a_i 's and b_i 's are the bits in A and B, respectively, and a_{n-1} and b_{n-1} are the sign bits.

The product, $P = A \times B$, is then given by the following equation:

$$P = A \times B$$

$$= \left(-a_{n-1}2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i\right) \times \left(-b_{n-1}2^{n-1} + \sum_{j=0}^{n-2} b_j 2^j\right)$$

$$= a_{n-1}b_{n-1}2^{2n-2} + \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} a_i b_j 2^{i+j}$$

$$-2^{n-1} \sum_{i=0}^{n-2} a_i b_{n-1} 2^i - 2^{n-1} \sum_{j=0}^{n-2} a_{n-1} b_j 2^j$$
(3)

Equation (3) indicates that the final product is obtained by subtracting the last two positive terms from the first two terms.

2.2 Baugh-Wooley multiplication algorithm

Rather than do a subtraction operation, we can obtain the 2's complement of the last two term and add all terms to get the final product.

The last two terms are n-1 bits each that extend in binary weight from position 2^{n-1} up to 2^{2n-3} . On the other hand, the final product is 2n bits and extends in binary weight from 2^0 up to 2^{2n-1} .

We pad each of the last two terms in Equation (3) with zeros to obtain a 2n-bit number to be able to add them to the other terms. The padded terms extend in binary weight from 2^0 up to 2^{2n-1} .

Assuming X is one of the last two terms we can represent it with zero padding as

$$X = -0 \times 2^{2n-1} + 0 \times 2^{2n-2} + 2^{n-1} \sum_{i=0}^{n-2} x_i 2^i + \sum_{j=0}^{n-2} 0 \times 2^j$$
(4)

The above equation gives the value of X due to the fact that a negative value is associated with the MSB.

When we store X in a register, the negative sign at MSB is not used since X is stored as a binary pattern. Thus partial product X is, therefore, represented by

bit position
$$2n-1$$
 $2n-2$ $2n-3$ $2n-4$... n $n-1$ $n-2$ $n-3$... 0 bit value 0 0 x_{n-2} x_{n-3} ... x_1 x_0 0 0 ... 0

The two's complement of X is obtained by complimenting all bits in the above equation and adding '1' at the LSB:

bit position
$$2n-1$$
 $2n-2$ $2n-3$ $2n-4$ ··· n $n-1$ $n-2$ $n-3$ ··· 0 bit value 1 1 x_{n-2} x_{n-3} ··· x_1 x_0 1 1 ··· $1+1$

Adding the '1' at LSB will result in the new pattern for -X as

bit position
$$2n-1$$
 $2n-2$ $2n-3$ $2n-4$ ··· n $n-1$ $n-2$ $n-3$ ··· 0 bit value 1 1 x_{n-2} x_{n-3} ··· x_1 x_0+1 0 0 ··· 0

Assuming the last two terms are expressed as X and Y, then adding -X to -Y amounts to adding the following two bit patterns:

bit position
$$2n-1$$
 $2n-2$ $2n-3$ $2n-4$ \cdots n $n-1$ $n-2$ $n-3$ \cdots 0

$$-X$$

$$+(-Y)$$

$$1$$

$$1$$

$$y_{n-2}$$

$$y_{n-3}$$

$$y_{n-3}$$

$$y_{0}+1$$

$$0$$

$$0$$

$$\cdots$$

$$0$$

The '1' pattern at most significant bits transforms into

bit position
$$2n-1$$
 $2n-2$

Similarly, the '1' pattern at position n-1 becomes

bit position
$$n - 1$$

The final product $P = A \times B$ in Equation (3) becomes:

$$P = a_{n-1}b_{n-1}2^{2n-2} + \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} a_i b_j 2^{i+j} + 2^{n-1} \sum_{i=0}^{n-2} \overline{b_{n-1}a_i} 2^i + 2^{n-1} \sum_{j=0}^{n-2} \overline{a_{n-1}b_j} 2^j + 2^{n-1} + 2^n$$

$$(5)$$

Let us assume that A and B are 4-bit binary numbers, then the product $P = A \times B$ is 8-bits long and is given by

$$P = a_3b_32^6 + \sum_{i=0}^{2} \sum_{j=0}^{2} a_ib_j2^{i+j} + 2^3 \sum_{i=0}^{2} \overline{b_3a_i}2^i + 2^3 \sum_{j=0}^{2} \overline{a_3b_j}2^j + 2^7 + 2^4$$

$$(6)$$

Figure 1 shows the implementation of the Baugh-Wooley multiplier.

The basic Baugh-Wooley cells are shown in Figure 2.

Figure 1: Block diagram of 4×4 Baugh-Wooley multiplier

- (a) Baugh-Wooley multiplier white-cell
- (b) Baugh-Wooley multiplier gray-cell

Figure 2: Baugh-Wooley multiplier basic cell construction

3 Pre-Lab Report

- 1. Estimate the delay of the 4×4 Baugh-Wolley multiplier. The gate delays are listed in Table 1.
- 2. Draw a block diagram of an 8 × 8 Baugh-Wooley multiplier.

Table 1: CMOS gate delays and areas normalized relative to an inverter.

Gate	Delay	Area	Comment
Inverter	1	1	Minimum delay
2-input NOR	1	3	More area to produce delay equal to that
			of an inverter
2-input NAND	1	3	More area to produce delay equal to that
			of an inverter
2-input AND	2	4	Composed of NAND followed by inverter
2-input OR	2	4	Composed of NOR followed by inverter
2-input XOR	3	11	Built using inverters and NAND gates
<i>n</i> -input OR	2	n/3 + 2	Uses saturated load
<i>n</i> -input AND	3	4n/3 + 2	Uses n-input OR preceded by inverters

4 Project Requirements

In this project you are required to design, model, and simulate a 4×4 multiplier based on the Baugh-Wooley algorithm.

- 1. The 4×4 Baugh-Wooley multiplier is to be hierarchically designed using 1-bit full adders and the two types of cells shown in Figure 1.
- 2. The delays of the components should be assigned with the help of Table 1 and assuming the delay of an inverter is 1 ns.
- 3. The multiplier has two inputs a and b of type signed representing the multiplier and multiplicand; and one output p of type signed representing the product.
- 4. Write a testbench to verify the operation of the multiplier. The testbench should try different number values and signs. Simulate the behavior of the multiplier using the testbench you developed.

5 Lab Report

- 1. Refer to the lab report grading scheme for items that must be present in your report.
- 2. Estimate the area of a 4×4 Baugh-Wolley multipliers. The gate areas are listed in Table 1.
- 3. Find the delay of the 4×4 multiplier using the waveform you got from simulation and comment on your results.