
What is BNF ?
Backus-Naur notation (shortly BNF) is a formal mathematical way to
describe a language, (to describe the syntax of the programming
languages).

The Backus-Naur Form is a way of defining syntax. It consists of

• a set of terminal symbols
• a set of non-terminal symbols
• a set of production rules of the form

 Left-Hand-Side ::= Right-Hand-Side

where the LHS is a non-terminal symbol and the RHS is a sequence of
symbols (terminals or non-terminals).

• The meaning of the production rule is that the non-terminal on
the left hand side may be replaced by the expression on the right
hand side.

• Any sentence which is derived using the production rules is said
to be syntactically correct.
It is possible to check the syntax of a sentence by building a
parse tree to show how the sentence is derived from the
production rules. If it is not possible to build such a tree then the
sentence has syntax errors.

• Syntax rules define how to produce well-formed sentences. But
this does not imply that a well formed sentence has any sensible
meaning. Semantics define what a sentence means.

• It is used to formally define the grammar of a language

How it works ?
BNF is sort of like a mathematical game: you start with a symbol
(called the start symbol and by convention usually named S in
examples) and are then given rules for what you can replace this
symbol with. The language defined by the BNF grammar is just the
set of all strings you can produce by following these rules.

The rules are called production rules, and look like this:

 symbol := alternative1 | alternative2 ...

• A production rule simply states that the symbol on the left-hand
side of the := must be replaced by one of the alternatives on the
right hand side.

• The alternatives are separated by |s. (One variation on this is to
use ::= instead of :=, but the meaning is the same.) Alternatives
usually consist of both symbols and something called terminals.

• Terminals are simply pieces of the final string that are not
symbols.

• There is one special symbol in BNF: @, which simply means
that the symbol can be removed. If you replace a symbol by @
you do it by just removing the symbol. This is useful because in
some cases it is difficult to end the replacement process without
using this trick.

• So, the language described by a grammar is the set of all strings
you can produce with the production rules. If a string cannot in
any way be produced by using the rules the string is not allowed
in the language.

A real example
Below is a sample BNF grammar:

 S := '-' FN |
 FN
 FN := DL |
 DL '.' DL
 DL := D |
 D DL
 D := '0' | '1' | '2' | '3' | '4' | '5' | '6'
| '7' | '8' | '9'

• The different symbols here are all abbreviations: S is the start
symbol, FN produces a fractional number, DL is a digit list,
while D is a digit.

• Valid sentences in the language described by this grammar are
all numbers, possibly fractional, and possibly negative. To
produce a number, start with the start symbol S

• Then replace the S symbol with one of its productions. In this
case we choose not to put a '-' in front of the number, so we use
the plain FN production and replace S by FN:

• The next step is then to replace the FN symbol with one of its
productions. We want a fractional number, so we choose the
production that creates two decimal lists with a '.' between them,
and after that we keep choosing replacing a symbol with one of
its productions once per line in the example below:

Step1: DL . DL
Step2: D . DL
Step3: 3 . DL
Step4: 3 . D DL
Step5: 3 . D D
Step6: 3 . 1 D
Step7: 3 . 1 4
Here we've produced the fractional number 3.14.

EBNF: What is it, and why do we need it?
In DL We had to use recursion (ie: DL can produce new DLs) to
express the fact that there can be any number of Ds. This is a bit
complicated and makes the BNF harder to read. Extended BNF
(EBNF, of course) solves this problem by adding new three operators:

• ? : which means that the symbol (or group of symbols in
parenthesis) to the left of the operator is optional (it can appear
zero or one times)

• * : which means that something can be repeated any number of
times (and possibly be skipped altogether)

• + : which means that something can appear one or more times

An EBNF sample grammar
So in extended BNF the above grammar can be written as:

 S := '-'? D+ ('.' D+)?

 D := '0' | '1' | '2' | '3' | '4' | '5' | '6'
| '7' | '8' | '9'
which is rather nicer. :)

Just for the record: EBNF is not more powerful than BNF in terms of
what languages it can define, just more convenient. Any EBNF
production can be translated into an equivalent set of BNF
productions.

Abbreviation for Alternative Rules
The alternative production rules may be listed more concisely using a
choice bar, | , as a separator. For example the rules above could be
given as:

<NaturalNumber> ::= <digit> Rule1a
 | <digit> <NaturalNumber> Rule1b

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 Rule2

Abbreviation for Optional Symbols
An optional element in a production rule is denoted by using square
brackets [].
Symbols enclosed in curly brackets may be repeated zero, one or more
times. A subscript may give the a minimum and maximum number of
repetitions.
 { } - zero, one or more
 { }1 - at least one
 { }1.. 5 - at least one and no more than five occurrences

