CS 556 – Computer Security Fall 2013

Dr. Indrajit Ray
Email: indrajit@cs.colostate.edu

Department of Computer Science Colorado State University Fort Collins, CO 80523, USA Malware **M**ALWARE

Malware Terminology

- Virus program that attaches itself to a host program and propagates copies of itself to other programs
- Worm program that propagates copies of itself to other computers
- Logic bomb program that triggers action when a particular condition occurs
- Trojan horse program that hides itself in a host program and contains unexpected additional functionality
- Backdoor program modification that allows unauthorized access to functionality
- Mobile code software that can be shipped unchanged to a heterogeneous collection of platforms and executed with identical semantics

Malware Terminology

- Auto-rooter malicious hacker tools used to break into new machines remotely
- Kit (virus generator) set of tools for generating new viruses automatically
- Spammer and Flooder programs that are used to send large volumes of unwanted e-mail, or to attack systems with a large volumes of traffic to carry out a DoS attack
- Keyloggers programs that capture keystrokes on a compromised system
- Rootkit set of hacker tools used after attacker has broken into a computer system and gained root-level access
- Zombie program on infected machine activated to launch attacks on other machines

Viruses

- Piece of software that infects programs
 - Modifying them to include a copy of the virus
 - ♦ So it executes secretly when host program is run
- Specific to operating system and hardware
- Take advantage of their details and weaknesses
- A typical virus cycles through 4 phases in its lifecycle

Virus Phases

- Dormant phase: The virus is idle. The virus will eventually be activated by some event,
 - A date
 - ★ The presence of another program or file
 - The capacity of the disk exceeding some limit.
- Propagation phase: The virus places an identical copy of itself into other programs or into certain system areas on the disk.
 Each infected program will now contain a clone of the virus, which will itself enter a propagation phase.
 - A virus will typically not propagate to another infected program

Virus Phases (continued)

- Triggering phase: The virus is activated to perform the function for which it was intended. Can be caused by a variety of system events
- Execution phase: The goal of the virus software is performed
 - Harmless e.g. display message on screen
 - Malevolent e.g. deletion of program or data files

Virus Structure

```
program V :=
(goto main;
   1234567; Virus DNA
   subroutine infect-executable :=
       {loop:
       file := get-random-executable-file;
                                             Infection module
       if (first-line-of-file = 1234567)
         then goto loop
         else prepend V to file; }
   subroutine do-damage :=
                                             Payload
       (whatever damage is to be done)
   subroutine trigger-pulled :=
       {return true if some condition holds}
      main-program :=
main:
       (infect-executable;
       if trigger-pulled then do-damage;
       goto next;)
next:
```

Virus Infection Model – Prepended

MALWARE Targeted Virus Virus Host **Targeted** File Host File Does not damage the host program Easier to clean

Virus Infection Model – Appended

MALWARE Infected Virus **Targeted** Host Host File File Virus Does not damage the host program But more difficult to clean

Virus Infection Model – Embedded

MALWARE Targeted Virus Infected Host File Virus Host File Damages the host program Difficult to clean

Virus Infection Model – Compression

```
program CV :=
(goto main;
    01234567;
    subroutine infect-executable :=
          (loop:
                file := get-random-executable-file;
          if (first-line-of-file = 01234567) then goto loop;
                compress file;
        (1)
                prepend CV to file;
        (2)
        main-program :=
main:
           (if ask-permission then infect-executable;
               uncompress rest-of-file;
              run uncompressed file;}
            CV
            Pi'
                    P_2
                                                      \mathbf{p}_{2}
```

Virus Classification (By Target)

- Boot sector Infects a master boot record or partition boot record and spreads when a system is booted from the disk containing the virus
- File infector Infects files that the operating system or shell consider to be executable
- Macro virus Infects files with macro code that is interpreted by an application

MALWARE

Encrypted Virus

- → The virus creates a random encryption key, stores in the virus body, and encrypts the remainder of the virus.
- When an infected program is invoked, the virus uses the stored random key to decrypt the virus.
- When the virus replicates, a different random key is selected.

MALWARE

Stealth Virus

- Virus explicitly designed to hide itself from detection by antivirus software. Thus, the entire virus, not just a payload is hidden.
- Hiding strategies
 - Intercept an antiviruss attempt to read a file (to detect virus) and presents a clean version of the file.
 - Slow down the infection rate
 - Set the hidden file attribute

MALWARE

Polymorphic Virus

- ♠ A virus that mutates with every infection, making detection by the "signature" of the virus virtually impossible
- Mutation strategies
 - Change order in which instructions are included in the body of the virus
 - Introduce new instructions that do not do anything useful
 - Use encryption

MALWARE

Metamorphic Virus

- A metamorphic virus mutates with every infection.
 - Virus rewrites itself completely at each iteration, increasing the difficulty of detection.
 - Some even have the ability to dynamically disassemble themselves, change their code, and reassemble themselves into an executable form.
 - May change their behavior as well as their appearance in every incarnation.

Worms

- Replicating program that propagates over the network using email, remote exec, remote login
- Unlike a virus, does not require a host to propagate
- Has phases like a virus:
 - → Dormant, propagation, triggering, execution
 - Propagation phase: searches for other systems, connects to it, copies self to it and runs
- May disguise itself as a system process

Worm Architecture

- A typical worm program has 5 components
 - ♦ Warhead
 - Propagation engine
 - ◆ Target selection algorithm
 - Scanning engine
 - → Payload

Worm Warhead

- Code that exploits some vulnerability to break into a target system
- Most popular techniques
 - Buffer overflow attacks
 - File-sharing attacks
 - Email systems allowing executable attachments
 - Common misconfiguration most notably use of default password

Propagation Engine

- Warhead opens the door to the target system. The Propagation
 Engine transfers the rest of the body of the worm into the system
- Most popular propagation protocols
 - File Trasfer Protocol (FTP uses clear-text user-id and password)
 - Trivial File Transfer Protocol (TFTP allows unauthenticated access)
 - Hyper Text Trasfer Protocol (HTTP)
 - ♦ Server Message Block protocol (SMB used for Windows file sharing. Unix servers running SAMBA support SMB)

Target Selection

- Looks for new victims to attack
- Most popular techniques
 - Email addresses
 - Host lists (from /etc/hosts or LMHOSTS)
 - Trusted systems (from .rhosts or equivalent files)
 - Network neighborhood (using NetBIOS or SMB protocol)
 - DNS Queries
 - Randomly selecting target network address

Scanning Engine

Malware

- Scans the network for suitable victim using the list of targets generated by the target selection engine
- Popular techniques
 - Open ports scanning
 - Vulnerability scanning

Worm Payload

- Code designed to implement some specific action on the target system
 - Plant a backdoor, spammer, keylogger, rootkit etc.
 - Plant a DDoS flood Agent (to allow launching a DDoS attack remotely)
 - Perform complex mathematical operation (typically cracking crypto keys)

Recent Advances in Worm Technology

- Multiplatform: Newer worms are not limited to specific OS, but can attack a variety of platforms, especially the popular varieties of UNIX.
- Multi-exploit: Newer worms penetrate systems in a variety of ways, using exploits against Web servers, browsers, email, file-sharing, and other network based applications
- Ultrafast spreading: Instead of scanning in real time, include list of target machines in worm body
- Polymorphic: Each copy of the worm has new code generated on the fly using functionally equivalent instructions and encryption techniques.
- Metamorphic: The worm has a repertoire of behavior patterns that are unleashed at different stages of propagation