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4 Perception

One of the most important tasks of autonomous systems of any kind isto acquire knowledge
about its environment. Thisis done by taking measurements using various sensors and then
extracting meaningful information from those measurements.

In this chapter we present the most common sensors used in mobile robots and then discuss
strategies for extracting information from the sensors. For more detailed information about
many of the sensors used on mobilerobots, refer to the comprehensive book Sensorsfor Mo-
bile Robots written by H.R. Everett [2].

4.1 Sensors for Mobile Robots
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Fig4.1 Examples of robots with multi-sensor systems:
a) HelpMate from Transition Research Corp.
b) B21 from Real World Interface
c) Roboart I1, built by H.R. Everett [2]
d) The Savannah River Ste nuclear surveillance robot

Thereis awide variety of sensors used in mobile robots (Fig. 4.1). Some sensors are used
to measure simple values like the internal temperature of a robot’s electronics or the rota-
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80 Autonomous Mobile Robots

tional speed of the motors. Other, more sophisticated sensors can be used to acquire infor-
mation about the robot’ s environment or even to directly measure arobot’s global position.
In this chapter we focus primarily on sensors used to extract information about the robot’s
environment. Because a mobile robot moves around, it will frequently encounter unfore-
seen environmental characteristics, and therefore such sensing is particularly critical. We
begin with a functional classification of sensors. Then, after presenting basic tools for de-
scribing a sensor’ s performance, we proceed to describe selected sensorsin detail.

4.1.1 Sensor Classification

We classify sensors using two important functional axes: proprioceptive/exteroceptive and
passive/active.

Proprioceptive sensors measure values internal to the system (robot); e.g. motor speed,
wheel load, robot arm joint angles, battery voltage.

Exteroceptive sensors acquire information from the robot’ s environment; e.g. distance mea-
surements, light intensity, sound amplitude. Hence exteroceptive sensor measurements are
interpreted by the robot in order to extract meaningful environmental features.

Passive sensors measure ambient environmental energy entering the sensor. Examples of
passive sensors include temperature probes, microphones and CCD or CMOS cameras.

Active sensors emit energy into the environment, then measure the environmental reaction.
Because active sensors can manage more controlled interactions with the environment, they
often achieve superior performance. However, active sensing introduces several risks: the
outbound energy may affect the very characteristics that the sensor is attempting to measure.
Furthermore, an active sensor may suffer from interference between its signal and those be-
yond its control. For example, signals emitted by other nearby robots, or smilar sensorson
the same robot my influence the resulting measurements. Examples of active sensors in-
clude wheel quadrature encoders, ultrasonic sensors and laser rangefinders.

Table 4.1 provides a classification of the most useful sensors for mobile robot applications.
The sensors types which are highlighted (bold italic) will be discussed in this chapter.

Table 4.1:

- P P:

General Classification Sensor Propriocep. Passive
(typical use) Sensor System EC: A:

Exter oceptive Active
Tactile Sensors Contact switches, bumpers EC P
(detection of physical contact or | Optical barriers EC A
closeness; security switches) Non-contact proximity sensors EC A
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Table4.1:
PC: P:
General Classification Sensor Propriocep. Passive
(typical use) Sensor System EC: A:
Exter oceptive Active
Wheel/motor sensors Brush Encoders PC P
(wheel/motor speed and posi- Potentiometers PC P
tion) Synchros, Resolvers PC A
Optical Encoders PC A
Magnetic Encoders PC A
Inductive Encoders PC A
Capacitive Encoders PC A
Heading sensors Compass EC P
(orientation of the robot inrela- | Gyroscopes PC P
tion to afixed reference frame) Inclinometers EC P/A
Ground based beacons GPS EC A
(localization in afixed reference | Active optical or RF beacons EC A
frame) Active ultrasonic beacons EC A
Reflective beacons EC A
Activeranging Reflectivity sensors EC A
(reflectivity, time-of-flight and Ultrasonic sensor EC A
geometric triangulation) Laser rangefinder EC A
Optical triangulation (1D) EC A
Sructured light (2D) EC A
M otion/speed sensors Doppler radar EC A
(speed relative to fixed or mov- | Doppler sound EC A
ing objects)
Vision-based sensors CCD/CMOS camera(s) EC P
(visua ranging, whole-image Visual ranging packages
analysis, segmentation, object Object tracking packages
recognition)

The sensor classes in Table (4.1) are arranged in ascending order of complexity and de-
scending order of technological maturity. Tactile sensors and proprioceptive sensors are
critical to virtually al mobile robots, and are well understood and easily implemented.
Commercial quadrature encoders, for example, may be purchased as part of a gear-motor
assembly used in a mobile robot. At the other extreme, visual interpretation by means of
one or more CCD/CMOS cameras provides a broad array of potential functionalities, from
obstacle avoidance and localization to human face recognition. However, commercially
available sensor units that provide visual functionalities are only now beginning to emerge
[105, 106].

4.1.2 Characterizing Sensor Performance

The sensors we describe in this chapter vary greatly in their performance characteristics.
Some sensors provide extreme accuracy in well-controlled |aboratory settings, but are over-
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82 Autonomous Mobile Robots

come with error when subjected to real-world environmental variations. Other sensors pro-
vide narrow, high precision data in a wide variety settings. In order to quantify such
performance characteristics, first we formally define the sensor performance terminology
that will be valuable throughout the rest of this chapter.

41.2.1 Basic sensor response ratings

A number of sensor characteristics can be rated quantitatively in a laboratory setting. Such
performance ratings will necessarily be best-case scenarios when the sensor is placed on a
real-world robot, but are nevertheless useful.

Dynamic rangeis used to measure the spread between the lower and upper limits of inputs
values to the sensor while maintaining normal sensor operation. Formally, the dynamic
rangeisthe ratio of the maximum input value to the minimum measurable input value. Be-
cause thisraw ratio can be unwieldy, it is usually measured in Decibels, which is computed
as ten times the common logarithm of the dynamic range. However, thereis potential con-
fusion in the calculation of Decibels, which are meant to measure the ratio between powers,
such as Watts or Horsepower. Suppose your sensor measures motor current and can register
valuesfrom aminimum of 1 Milliampereto 20 Amperes. The dynamic range of this current
sensor isdefined as:

100 Iog[%}z 43dB 4.1)

Now suppose you have a voltage sensor that measures the voltage of your robot’s battery,
measuring any value from 1 Millivolt to 20 Volts. Voltage is not a unit of power, but the
square of voltage is proportional to power. Therefore, we use 20 instead of 10:

20 0 Iog[%}z 86dB 4.2)

Rangeis aso an important rating in mobile robot applications because often robot sensors
operate in environments where they are frequently exposed to input values beyond their
working range. In such cases, it is critical to understand how the sensor will respond. For
example, an optical rangefinder will have a minimum operating range and can thus provide
spurious data when measurements are taken with object closer than that minimum.

Resolution is the minimum difference between two values that can be detected by a sensor.
Usually, thelower limit of the dynamic range of asensor isequal toitsresolution. However,
in the case of digital sensors, thisis not necessarily so. For example, suppose that you have
a sensor that measures voltage, performs an analog-to-digital conversion and outputs the
converted value as an 8-bit number linearly corresponding to between 0 and 5 Volts. If this

sensor istruly linear, thenit has 28 _1 total output values, or aresolution of 25—5\5/5 = 20mV.

Linearity is an important measure governing the behavior of the sensor’s output signal as
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theinput signal varies. A linear response indicatesthat if two inputsx and y result in thetwo
outputs f(x) and f(y), then for any valuesa and b, f(ax + by) = af(x) + bf(y). This meansthat
aplot of the sensor’sinput/output response is simply a straight line.

Banadwidth or Frequency is used to measure the speed with which a sensor can provide a
stream of readings. Formally, the number of measurements per second is defined as the sen-
sor’s frequency in Hertz. Because of the dynamics of moving through their environment,
mobile robots often are limited in maximum speed by the bandwidth of their obstacle detec-
tion sensors. Thus increasing the bandwidth of ranging and vision-based sensors has been
ahigh-priority goal in the robotics community.

4.1.2.2 In Situ sensor performance

The above sensor characteristics can be reasonably measured in alaboratory environment,
with confident extrapolation to performance in real-world deployment. However, anumber
of important measures cannot be reliably acquired without deep understanding of the com-
plex interaction between all environmental characteristics and the sensorsin question. This
is most relevant to the most sophisticated sensors, including active ranging sensors and vi-
sual interpretation sensors.

Sensitivity itself isadesirabletrait. Thisisameasure of the degree to which an incremental
changein thetarget input signal changesthe output signal. Formally, sensitivity istheratio
of output change to input change. Unfortunately, however, the sensitivity of exteroceptive
sensors is often confounded by undesirable sensitivity and performance coupling to other
environmental parameters.

Cross-sensitivity is the technical term for sensitivity to environmental parameters that are
orthogonal to the target parameters for the sensor. For example, a flux-gate compass can
demonstrate high sensitivity to magnetic north and is therefore of use for mobile robot nav-
igation. However, the compass will aso demonstrate high sensitivity to ferrous building
materials, so much so that its cross-sensitivity often makes the sensor uselessin someindoor
environments. High cross-sensitivity of a sensor is generaly undesirable, especialy so
when it cannot be modeled.

Error of asensor isdefined asthe difference between the sensor’ s output measurements and
the true values being measured, within some specific operating context. Given atrue value
v and ameasured value m, we can defineerror as. error = m—v.

Accuracy is defined as the degree of conformity between the sensor’ s measurement and the
true value, and is often expressed as a proportion of the true value (e.g. 97.5% accuracy):

%ccuraoy =1- % 4.3

Of course, obtaining the ground truth, v, can be difficult or impossible, and so establishing
a confident characterization of sensor accuracy can be problematic. Further, it isimportant
to distinguish between two different sources of error:
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Systematic errors are caused by factors or processes that can in theory be modeled. These
errorsare, therefore, deterministic (i.e. predictable). Poor calibration of alaser rangefinder,
unmodeled slope of ahallway floor and abent stereo camera head due to an earlier collision
are all possible causes of systematic sensor errors.

Random errors cannot be predicted using a sophisticated model nor can they be mitigated
with more precise sensor machinery. These errors can only be described in probabilistic
terms (i.e. stochastically). Hue instability in a color camera, spurious rangefinding errors
and black level noisein acameraare al examples of random errors.

Precision is often confused with accuracy, and now we have the toolsto clearly distinguish
these two terms. Intuitively, high precision relates to reproducibility of the sensor results.
For example, one sensor taking multiple readings of the same environmental state has high
precision if it produces the same output. In another example, multiple copies of this sensors
taking readings of the same environmental state have high precision if their outputs agree.
Precision does not, however, have any bearing on the accuracy of the sensor’s output with
respect to the true value being measured. Suppose that the random error of asensor is char-
acterized by some mean value 1 and a standard deviation 0. Theformal definition of pre-
cisionistheratio of the sensor’ s output range to the standard deviation:

precision = %gg (4.4

Note that only o and not i has impact on precision. In contrast mean error [ is directly
proportional to overall sensor error and inversely proportional to sensor accuracy.

4.1.2.3 Characterizing error: the challenges in mobile robotics

M obile robots depend heavily on exteroceptive sensors. Many of these sensors concentrate
on acentral task for the robot: acquiring information on objectsin the robot’simmediate vi-
cinity so that it may interpret the state of its surroundings. Of course, these "objects" sur-
rounding therobot are all detected from the viewpoint of itslocal reference frame. Sincethe
systems we study are mobile, their ever-changing position and their motion has asignificant
impact on overall sensor behavior. In this section, empowered with the terminology of the
last two sections, we describe how dramatically the sensor error of amobile robot disagrees
with theideal picture drawn in the previous section.

Blurring of systematic and random errors

Active ranging sensors tend to have failure modes that are triggered largely by specific rel-
ative positions of the sensor and environment targets. For example, asonar sensor will prod-
uct specular reflections, producing grossly inaccurate measurements of range, at specific
angles to a smooth sheetrock wall. During motion of the robot, such relative angles occur
at stochastic intervals. Thisisespecialy true in amobile robot outfitted with aring of mul-
tiple sonars. The chances of one sonar entering this error mode during robot motion is high.
From the perspective of the moving robot, the sonar measurement error is arandom error in
this case. Y, if the robot were to stop, becoming motionless, then a very different error
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modality is possible. If the robot’s static position causes a particular sonar to fail in this
manner, the sonar will fail consistently and will tend to return precisely the same (and incor-
rect!) reading time after time. Once the robot is motionless, the error appears to be system-
atic and high precision.

The fundamental mechanism at work here isthe cross-sensitivity of mobile robot sensorsto
robot pose and robot-environment dynamics. The models for such cross-sensitivity are not,
in an underlying sense, truly random. However, these physical interrelationships are rarely
modeled and therefore, from the point of view of anincomplete model, the errors appear ran-
dom during motion and systematic when the robot is at rest.

Sonar isnot the only sensor subject to thisblurring of systematic and random error modality.
Visual interpretation through the use of a CCD camerais aso highly susceptible to robot
motion and position because of cameradependency on lighting changes, lighting specul arity
(e.g. glare) and reflections. Theimportant point isto realize that, while systematic error and
random error are well-defined in acontrolled setting, the mobile robot can exhibit error char-
acteristics that bridge the gap between deterministic and stochastic error mechanisms.

Multi-modal error distributions

Itiscommon to characterizethe behavior of a sensor’ srandom error interms of aprobability
distribution over various output values. In general, one knows very little about the causes
of random error and therefore several simplifying assumptions are commonly used. For ex-
ample, we can assume that the error is zero-mean, in that it symmetrically generates both
positive and negative measurement error. We can go even further and assume that the prob-
ability density curve is Gaussian. Although we discuss the mathematics of thisin detail in
Section 4.2, it is important for now to recognize the fact that one frequently assumes sym-
metry aswell asunimodal distribution. Thismeans that measuring the correct value is most
probable, and any measurement that isfurther away from the correct valueislesslikely than
any measurement that is closer to the correct value. These are strong assumptions that en-
able powerful mathematical principlesto be applied to mobile robot problems, but it isim-
portant to realize how wrong these assumptions usually are.

Consder, for example, the sonar sensor once again. When ranging an object that reflects
the sound signal well, the sonar will exhibit high accuracy, and will induce random error
based on noise, for example, in the timing circuitry. This portion of its sensor behavior will
exhibit error characteristicsthat arefairly symmetric and unimodal. However, when the so-
nar sensor is moving through an environment and is sometimes faced with materials that
cause coherent reflection rather than returning the sound signal to the sonar sensor, then the
sonar will grossly overestimate distance to the object. In such cases, the error will be biased
toward positive measurement error and will be far from the correct value. The error is not
strictly systematic, and so we are left modeling it as a probability distribution of random er-
ror. Sothe sonar sensor hastwo separate types of operational modes, oneinwhichthe signal
does return and some random error is possible, and the second in which the signal returns
after a multi-path reflection, and gross overestimation error occurs. The probability distri-
bution could easily be at least bimodal in this case, and since overestimation is more com-
mon than underestimation it will also be asymmetric.
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As a second example, consider ranging via stereo vision. Once again, we can identify two
modes of operation. If the stereo vision system correctly correlates two images, then there-
sulting random error will be caused by camera noise and will limit the measurement accu-
racy. But the stereo vision system can also correlate two imagesincorrectly, matching two
fence posts for example that are not the same post in the real world. In such a case stereo
vision will exhibit gross measurement error, and one can easily imagine such behavior vio-
lating both the unimodal and the symmetric assumptions.

Thethesis of this section isthat sensorsin amobile robot may be subject to multiple modes
of operation and, when the sensor error is characterized, unimodality and symmetry may be
grosdy violated. Nonetheless, asyou will see, many successful maobile robot systems make
use of these simplifing assumptions and the resulting mathematical techniques with great
empirical success.

The above sections have presented aterminology with which we can characterize the advan-
tages and disadvantages of various mobile robot sensors. In the following sections, we do
the same for a sampling of the most commonly used mobile robot sensors today.

4.1.3 Wheel/motor sensors

Wheel/motor sensors are devices use to measure the internal state and dynamics of amobile
robot. These sensors have vast applications outside of mobile robotics and, as aresult, mo-
bile robotics has enjoyed the benefits of high-quality, low-cost wheel and motor sensorsthat
offer excellent resolution. In the next subsection, we samplejust one such sensor, the optical
incremental encoder.

4.1.3.1 Optical Encoders

Optical incremental encoders have become the most popular device for measuring angular
speed and position within amotor drive or at the shaft of awheel or steering mechanism. In
mobile robotics, encoders are used to control the position or speed of wheels and other mo-
tor-driven joints. Because these sensors are proprioceptive, their estimate of position isbest
in the reference frame of the robot and, when applied to the problem of robot localization,
significant corrections are required as discussed in Chapter 5.

An optical encoder is basically a mechanical light chopper that produces a certain number
of sine or square wave pulses for each shaft revolution. It consists of an illumination source,
afixed grating that masks the light, arotor disc with afine optical grid that rotates with the
shaft, and fixed optical detectors. Astherotor moves, the amount of light striking the optical
detectors varies based on the alignment of the fixed and moving gratings. In robotics, the
resulting sine wave is transformed into a discrete square wave using a threshold to choose
between light and dark states. Resolution is measured in Cycles Per Revolution (CPR). The
minimum angular resolution can be readily computed from an encoder’ sCPR rating. A typ-
ical encoder in mobile robotics may have 2,000 CPR while the optical encoder industry can
readily manufacture encodres with 10,000 CPR. In terms of required bandwidth, it is of
course critical that the encoder be sufficiently fast to count at the shaft spin speeds that are
expected. Industrial optical encoders present no bandwidth limitation to mobile robot appli-
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Fig4.2 Quadrature optical wheel encoder: The observed phase relationship be-
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pulse per revolution.

cations.

Usually in mobile robotics the quadrature encoder is used. In this case, a second illumina-
tion and detector pair is placed 90° shifted with respect to the original in terms of the rotor
disc. The resulting twin square waves, shown in Fig. 4.2, provide significantly more infor-
mation. The ordering of which square wave produces arising edge first identifies the direc-
tion of rotation. Furthermore, the four detectably different statesimprove the resolution by
afactor of four with no change to the rotor disc. Thus, a 2,000 CPR encoder in quadrature
yields 8,000 counts. Further improvement is possible by retaining the sinusoidal wave mea-
sured by the optical detectorsand performing sophisticated interpolation. Such methods, al-
though rare in mobile robotics, can yield 1000-fold improvements in resolution.

As with most proprioceptive sensors, encoders are generally in the controlled environment
of a mobile robot’s internal structure, and so systematic error and cross-sensitivity can be
engineered away. The accuracy of optical encoders is often assumed to be 100% and, al-
though this may not entirely correct, any errors at thelevel of an optical encoder are dwarfed
by errors downstream of the motor shaft.

4.1.4 Heading Sensors

Heading sensors can be proprioceptive (gyroscope, inclinometer) or exteroceptive (com-
pass). They are used to determine the robots orientation and inclination. They allow us, to-
gether with appropriate velocity information, to integrate the movement to a position
estimate. This procedure, which has its roots in vessel and ship navigation, is called dead
reckoning.

4.1.4.1 Compasses

The two most common modern sensors for measuring the direction of a magnetic field are
the Hall Effect and Flux Gate compasses. Each has advantages and disadvantages, as de-
scribed below.

The Hall Effect describes the behavior of electric potential in a semiconductor when in the
presence of amagnetic field. When aconstant current is applied across the length of asemi-
conductor, there will be a voltage difference in the perpendicular direction, across the semi-
conductor’ s width, based on the relative orientation of the semiconductor to magnetic flux

R. Siegwart, EPFL, lllah Nourbakhsh, CMU



88 Autonomous Mobile Robots

Fig4.3 Digital compasses: Sensors such as the Digital/Analog hall effect sensors
shown, available from Dinsmore [ http://dinsmoregroup.conmvdico], enable
inexpensive (< $USL5) sensing of magnetic fields.

lines. In addition, the sign of the voltage potential identifies the direction of the magnetic
field. Thus, asingle semiconductor provides ameasurement of flux and direction along one
dimension. Hall Effect digital compasses are popular in mobile robotics, and contain two
such semiconductors at right angles, providing two axes of magnetic field (thresholded) di-
rection, thereby yielding one of 8 possible compass directions. The instruments are inex-
pensive but also suffer from a range of disadvantages. Resolution of a digital hall effect
compass is poor. Internal sources of error include the nonlinearity of the basic sensor and
systematic bias errors at the semiconductor level. Theresulting circuitry must perform sig-
nificant filtering, and this lowers the bandwidth of hall effect compasses to values that are
slow in mobile robot terms. For example the hall effect compasses pictured in figure 4.3
needs 2.5 seconds to settle after a 90° spin.

The Flux Gate compass operates on adifferent principle. Two small coils are wound on fer-
rite cores and are fixed perpendicular to one-another. When alternating current is activated
in both coils, the magnetic field causes shifts in the phase depending upon its relative align-
ment with each coil. By measuring both phase shifts, the direction of the magnetic field in
two dimensions can be computed. The flux-gate compass can accurately measure the
strength of a magnetic field and has improved resolution and accuracy; however it is both
larger and more expensive than a Hall Effect compass.

Regardless of the type of compass used, amajor drawback concerning the use of the Earth’s
magnetic field for mobile robot applications involves disturbance of that magnetic field by
other magnetic objects and man-made structures, as well as the bandwidth limitations of
electronic compasses and their susceptibility to vibration. Particularly in indoor environ-
ments mobile robotics applications have often avoided the use of compasses, although a
compass can conceivably provide useful local orientation information indoors, even in the
precense of steel structures.

4.1.4.2 Gyroscope

Gyroscopes are heading sensors which preserve their orientation in relation to afixed refer-
ence frame. Thusthey provide an absolute measure for the heading of amobile system. Gy-
roscopes can be classified in two categories, mechanical gyroscopes and optical gyroscopes.
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Fig4.4 Two axis mechanical gyroscope

Mechanical Gyroscopes

The concept of amechanical gyroscoperelieson theinertial properties of afast spinning ro-
tor. The property of interest is known as the gyroscopic precession. If you try to rotate a
fast spinning wheel around its vertical axis, you will feel a harsh reaction in the horizontal
axis. Thisis due to the angular momentum associated with a spinning wheel and will keep
the axis of the gyroscope inertially stable. The reactive torque t and thus the tracking sta-
bility with the inertial frame are proportional to the spinning speed ) the precession speed
Qand thewhedl’sinertial.

T = laQ (4.5)

By arranging a spinning wheel as seen in Figure 4.4, no torque can be transmitted from the
outer pivot to the wheel axis. The spinning axis will therefore be space-stable (i.e. fixed in
aninertial referenceframe). Nevertheless, the remaining friction in the bearings of the gyro-
axis introduce small torques, thus limiting the long term space stability and introducing
small errors over time. A high quality mechanical gyroscope can cost up to $100,000 and
has an angular drift of about 0.1° in 6 hours.

For navigation, the spinning axis has to be initialy selected. If the spinning axisis aligned
with the north-south meridian, the earth’ srotation has no effect on thegyro’ shorizontal axis.
If it points east-west, the horizontal axis reads the earth rotation.

Rate gyros have the same basic arrangement as shown in Figure 4.4 but with a slight modi-
fication. The gimbals are restrained by atorsional spring with additional viscous damping.
This enables the sensor to measure angular speeds instead of absolute orientation.

Optical Gyroscopes

Optical gyroscopes are a relatively new innovation. Commercial use began in the early
1980’ swhen they werefirst installed in aircraft. Optical gyroscopes are angular speed sen-
sors that use two monochromatic light beams, or lasers, emitted from the same source in-
stead of moving, mechanical parts. They work on the principle that the speed of light
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remains unchanged and, therefore, geometric change can cause light to take a varying
amount of timeto reach its destination. One laser beam is sent traveling clockwise through
afiber while the other travels counterclockwise. Because the laser traveling in the direction
of rotation has adlightly shorter path, it will have ahigher frequency. Thedifferenceinfre-
quency Af of the two beamsisaproportional to the angular velocity Qof the cylinder. New
solid-state optical gyroscopes based on the same principle are build using microfabrication
technology, thereby providing heading information with resolution and bandwidth far be-
yond the needs of mabile robotic applications. Bandwidth, for instance, can easily exceed
100K Hz while resolution can be smaller than 0.0001°/hr.

4.1.5 Ground-Based Beacons

One elegant approach to solving the localization problem in mobile roboticsisto use active
or passive beacons. Using the interaction of on-board sensors and the environmental bea-
cons, therobot canidentify its position precisely. Although the general intuition isidentical
to that of early human navigation beacons, such as stars, mountains and lighthouses, modern
technology has enabled sensors to localize an outdoor robot with accuracies of better than 5
cm within areas that are kilometersin size.

In the following subsection, we describe one such beacon system, the Global Positioning
System (GPS), which isextremely effective for outdoor ground-based and flying robots. In-
door beacon systems have been generally less successful for a number of reasons. The ex-
pense of environmental modification in an indoor setting is not amortized over an extremely
large useful area, asit isfor exampleinthe case of GPS. Furthermore, indoor environments
offer significant challenges not seen outdoors, including multipath and environment dynam-
ics. A laser-based indoor beacon system, for example, must disambiguate the one true | aser
signal from possibly tens of other powerful signals that have reflected off of walls, smooth
floorsand doors. Confounding this, humans and other obstacles may be constantly changing
the environment, for example occluding the one true path from the beacon to the robot. In
commercial applications such as manufacturing plants, the environment can be carefully
controlled to ensure success. In less structured indoor settings, beacons have nonetheless
been used, and the problems are mitigated by careful beacon placement and the useful of
passive sensing modalities.

4.1.5.1 The Global Positioning System

The GPSwasinitially developed for military use but isnow freely availablefor civilian nav-
igation. There are at least 24 operational GPS satellites at all times. The satellites orbit ev-
ery 12 hours at a height of 20.190km. Four satellites are located in each of six planes
inclined 55° with respect to the plane of the earth’s equator (figure 4.5).

Each satellite continuously transmits data that indicates its location and the current time.
Therefore, GPS receivers are completely passive but exteroceptive sensors. The GPS satel-
lites synchronize their transmissions so that their signals are sent at the sametime. When a
GPS receiver reads the transmission of two or more satellites, the arrival time differences
inform the receiver as to its relative distance to each satellite. By combining information
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regarding the arrival time and instantaneous location of four satellites, the receiver can infer
its own position. In theory, such triangulation requires only three data points. However,
timing is extremely critical in the GPS application because the time intervals being mea-
sured are in the nanoseconds. Itis, of course, mandatory that the satellites be well synchro-
nized. To thisend, they are updated by ground stations regularly and each satellite carries
on-board atomic clocks for timing.

The GPS receiver clock is aso important so that the travel time of each satellite’ stransmis-
sion can be accurately measured. But GPS receivers have a smple quartz clock. So, al-
though 3 satellites would ideally provide position in three axes, the GPS receiver requires 4
satellites, using the additional information to solve for 4 variables: three position axes plus
atime correction.

The fact that the GPS receiver must read the transmission of 4 satellites simultaneously isa
significant limitation. GPS satellite transmissions are extremely low-power, and reading
them successfully requires direct line-of-sight communcation with the satellite. Thus, in
confined spaces such as city blocks with tall buildings or dense forests, one is unlikely to
receive 4 satellitesreliably. Of course, most indoor spaceswill alsofail to provide sufficient
visibility of the sky for a GPS receiver to function. For these reasons, GPS has been a pop-
ular sensor in mobile robotics, but has been relegated to projectsinvolving mobile robot tra-
versal of wide-open spaces and autonomous flying machines.

A number of factors affect the performance of alocalization sensor that makes use of GPS.
Fird, it isimportant to understand that, because of the specific orbital paths of the GPS sat-
ellites, coverageisnot geometrically identical in different portions of the Earth and therefore
resolution is not uniform. Specifically, at the North and South poles, the satellites are very
close to the horizon and, thus, while resolution in the latitude and longitude directions is
good, resolution of altitudeisrelatively poor as compared to more equatorial locations.
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The second point is that GPS satellites are merely an information source. They can be em-
ployed with various strategies in order to achieve dramatically different levels of localiza-
tion resolution. The basic strategy for GPS use, called pseudorange and described above,
generally performs at aresolution of 15m. An extension of this method is differential GPS,
which makes use of asecond receiver that is static and at a known exact position. A number
of errorscan be corrected using this reference, and so resolution improvesto the order of 1m
or less. A disadvantage of thistechnique isthat the stationary receiver must be installed, its
location must be measured very carefully and of course the moving robot must be within ki-
lometers of this static unit in order to benefit from the DGPS technique.

A further improved strategy is to take into account the phase of the carrier signals of each
received satellite transmission. There are two carriers, at 19cm and 24cm, therefore signif-
icant improvements in precision are possible when the phase difference between multiple
satellites is measured successfully. Such receivers can achieve 1cm resolution for point po-
sitions and, with the use of multiple receivers asin DGPS, sub-1cm resolution.

A final consideration for mobile robot applicationsis bandwidth. GPS will generally offer
no better than 200 - 300ms latency, and so one can expect no better than 5SHz GPS updates.
On a fast-moving mobile robot or flying robot, this can mean that local motion integration
will be required for proper control due to GPS latency limitations.

4.1.6 Active Ranging

Active range sensors continue to be the most popular sensors in mobile robotics. Many
ranging sensors have a low price point, and most importantly all ranging sensors provide
easily interpreted outputs: direct measurements of distance from the robot to objects in its
vicinity. For obstacle detection and avoidance, most mobile robots rely heavily on active
ranging sensors. But the local freespace information provided by range sensors can aso be
accumulated into representations beyond the robot’ s current local referenceframe. Thusac-
tive range sensors are also commonly found as part of the localization and environmental
modeling processes of mobile robots. It isonly with the slow advent of successful visual
interpretation competency that we can expect the class of active ranging sensorsto gradually
lose their primacy as the sensor class of choice among mobile roboticists.

Below, we present two time-of-flight active range sensors: the ultrasonic sensor and the laser
rangefinder. Then, we present two geometric active range sensors: the optical triangulation
sensor and the structured light sensor.

4.1.6.1 Time-of-Flight active ranging

Time-of-flight ranging makes use of the propagation speed of sound or an electromagnetic
wave. Ingenera, the travel distance of a sound of electromagnetic wave is given by:

d=cOt (4.6)

where
d = distance traveled (usually round-trip)
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C = speed of wave propagation
t = time of flight.

It isimportant to point out that the propagation speed v of sound is approximately 0.3 m/ms
whereasthe speed of electromagnetic signalsare 0.3 m/ns, which isone million timesfaster.
Thetime of flight for atypical distance, say 3 meters, is 10 msfor an ultrasonic system but
only 10 nsfor alaser rangefinder. It isthus evident that measuring the time of flight t with
electromagnetic signalsis more technologically challenging. Thisexplainswhy laser range
sensors have only recently become affordable and robust for use on mobile robots.

The quality of time-of-flight range sensors depends mainly on:
* Uncertainties in determining the exact time of arrival of the reflected signal
* Inaccuraciesin the time of flight measurement (particularly with laser range sensors)
* Thedispersal cone of the transmitted beam (mainly with ultrasonic range sensors)
* Interaction with the target (e.g. surface absorption, specular reflections)
» Variation of propagation speed
» The speed of the maobile robot and target (in the case of a dynamic target)

As discussed below, each type of time-of-flight sensor is sensitive to a particular subset of
the above list of factors.

The Ultrasonic Sensor (time-of-flight, sound)

The basic principle of an ultrasonic sensor is to transmit a packet of (ultrasonic) pressure
waves and to measure the timeit takes for thiswave to reflect and return to the receiver. The
distance d of the object causing the reflection can be calculated based on the propagation
speed of sound ¢ and the time of flight t.

_ cOt
d= > 4.7)

The speed of sound cinair is given by

c= JYRT (4.8)

where
y: ratio of specific heats
R: gas constant
T: temperature in degree Kelvin
Inair at standard pressure and 20° Celsius the speed of sound is approximately ¢ = 343 m/s.

Figure 4.6 showsthe different signal output and input of an ultrasonic sensor. First, a series
of sound pulses are emitted, comprising the wave packet. An integrator also beginsto lin-
early climb in value, measuring the time from the transmission of these sound waves to de-
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tection of an echo. A threshold valueisset for triggering an incoming sound wave asavalid
echo. Thisthreshold isoften decreasing in time, because the amplitude of the expected echo
decreases over time based on dispersal asit travels longer. But during transmission of the
initial sound pulses and just afterwards, the threshold is set very high to suppress triggering
the echo detector with the outgoing sound pulses. A transducer will continueto ring for up
to several milliseconds after the initial transmission, and this governs the blanking time of
the sensor. Note that if, during the blanking time, the transmitted sound were to reflect off
of an extremely close object and return to the ultrasonic sensor, it may fail to be detected.

However, once the blanking interval has passed, the system will detect any above-threshold
reflected sound, triggering a digital signal and producing the distance measurement using
the integrator value.

The ultrasonic wave typically has afrequency between 40 and 180 kHz and is usually gen-
erated by a piezo or electrostatic transducer. Often the same unit is used to measure the re-
flected signal, although the required blanking interval can be reduced through the use of
separate output and input devices. Fregquency can be used to select a useful range when
choosing the appropriate ultrasonic sensor for a mobile robot. Lower frequencies corre-
spond to alonger range, but with the disadvantage of longer post-transmission ringing and,
therefore, the need for longer blanking intervals. Most ultrasonic sensors used by mobile
robots have an effective range of roughly 12cmto 5 metres. The published accuracy of com-
mercial ultrasonic sensors varies between 98% and 99.1%. In mobile robot applications,
specific implementations generally achieve aresolution of approximately 2cm.

In most cases one may want a narrow opening angle for the sound beam in order to also ob-
tain precise directional information about objects that are encountered. Thisisamajor lim-
itation since sound propagates in a cone-like manner (fig. 4.7) with opening angles around
20°- 40°. Consequently, when using ultrasonic ranging one does not acquire depth data
points but, rather, entire regions of constant depth. This means that the sensor tells us only
that there is an object at a certain distance in within the area of the measurement cone. The
sensor readingsmust be plotted as segments of an arc (sphere for 3D) and not as point mea-
surements (fig. 4.8). However, recent research devel opments show significant improvement
of the measurement quality in using sophisticated echo processing [87].

Ultrasonic sensors suffer from several additional drawbacks, namely in the areas of error,
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bandwidth and cross-sensitivity. The published accuracy values for ultrasonics are nominal
values based on successful, perpendicular reflections of the sound wave off an acoustically
reflective material. Thisdoes not capture the effective error modality seen on amobile robot
moving through its environment. As the ultrasonic transducer’s angle to the object being
ranged varies away from perpendicular, the chances become good that the sound waves will
coherently reflect away from the sensor, just aslight at a shallow angle reflects off of amir-
ror. Therefore, the true error behavior of ultrasonic sensors is compound, with a well-un-
derstood error distribution near the true value in the case of asuccessful retro-reflection, and
amore poorly-understood set of range values that are grossy larger than the true value in
the case of coherent reflection. Of course the acoustic properties of the material being
ranged have direct impact on the sensor’ s performance. Again, the impact is discrete, with
one material possibly failing to produce a reflection that is sufficiently strong to be sensed
by the unit. For example, foam, fur and cloth can, in various circumstances, acoustically ab-
sorb the sound waves.

A fina limitation for ultrasonic ranging relates to bandwidth. Particularly in moderately
open spaces, asingle ultrasonic sensor has arelatively slow cycletime. For example, mea-
suring the distance to an object that is 3 meters away will take such a sensor 20ms, limiting
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its operating speed to 50 Hz. But if the robot has aring of 20 ultrasonic sensors, each firing
sequentially and measuring to minimizeinterference between the sensors, then thering’ scy-
cletime becomes 0.4s and the overall update frequency of any one sensor isjust 2.5Hz. For
arobot conducting moderate speed motion while avoiding obstacles using ultrasonics, this
update rate can have ameasurable impact on the maximum speed possiblewhile still sensing
and avoiding obstacles safely.

Laser Rangefinder (time of flight, electromagnetic)

The laser rangefinder is atime-of-flight sensor that achieves significant improvements over
the ultrasonic range sensor due to the use of laser light instead of sound. Thistype of sensor
consists of atransmitter which illuminates a target with a collimated beam (e.g. laser), and
areceiver capable of detecting the component of light which is essentially coaxial with the
transmitted beam. Often referred to as optical radar or lidar (light detection and ranging),
these devices produce a range estimate based on the time needed for the light to reach the
target and return. A mechanical mechanism with amirror sweepsthe light beam to cover the
required scene in aplane or even in 3 dimensions, using a rotating, nodding mirror.

One way to measure the time of flight for the light beam is to use a pulsed laser and then
measured the elapsed time directly, just asin the ultrasonic solution described earlier. Elec-
tronics capable of resolving picoseconds are required in such devices and they are therefore
very expensive. A second method is to measure the beat frequency between a frequency
modulated continuous wave (F.M.C.W.) and its received reflection. Another, even easier
method is to measure the phase shift of the reflected light. We describe this third approach
in detail.

Phase-Shift Measurement

Near infrared light (from an LED or alaser) is collimated and transmitted from the transmit-
ter T in figure 4.9 and hits a point P in the environment. For surfaces having a roughness
greater than the wavelength of the incident light, diffuse reflection will occur, meaning that
thelight isreflected almost isotropically. The wavelength of theinfrared light emitted is824
nm and so most surfaces with the exception of only highly polished reflecting objects, will
be diffuse reflectors. The component of the infrared light which falls within the receiving
aperture of the sensor will return almost parallel to the transmitted beam, for distant objects.

The sensor transmits 100% amplitude modulated light at a known frequency and measures
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the phase shift between the transmitted and reflected signals. Figure 4.10 shows how this
technique can be used to measure range. The wavelength of the modulating signal obeysthe
equation ¢ = fA where c is the speed of light and f the modulating frequency. For f =5 Mhz
(asinthe AT&T sensor), A = 60 meters. Thetotal distance D’ covered by the emitted light is

- -+ 8
D'=L+2D = L+5-A (4.9)

where D and L are the distances defined in figure 4.9. The required distance D, between the
beam splitter and the target, is therefore given by

A

D = 7.8 (4.10)

where @isthe electronically measured phase difference between the transmitted and reflect-
ed light beams, and A the known modul ating wavel ength. It can be seen that the transmission
of asinglefrequency modulated wave can theoretically result in ambiguous range estimates
since for example if A = 60 meters, a target at a range of 5 meters would give an indistin-
guishable phase measurement from a target at 65 meters, since each phase angle would be
360° apart. Wetherefore define an “ambiguity interval” of A, but in practice we note that the
range of the sensor is much lower than A due to the attenuation of the signal in air.

It can be shown that the confidence in the range (phase estimate) is inversely proportional
to the sguare of the received signal amplitude, directly affecting the sensor’s accuracy.
Hence dark, distant objectswill not produce as good range estimates as close, bright objects.

In figure 4.11 the schematic of a typical 360° laser range sensor and two examples are
shown. Figure 4.12 shows a typical range image of a 360° scan taken with an laser range
Sensor.

As expected, the angular resolution of laser rangefinders far exceeds that of ultrasonic sen-
sors. The Sick laser scanner shown in Figure 4.11 achieves an angular resolution of 0.5°.
Depth resolution is approximately 5cm, over arange from 5cm up to 20m or more, depend-
ing upon the brightness of the object being ranged. This device performs 25 180° scans per
second but has no mirror nodding capability for the vertical dimension.

As with ultrasonic ranging sensors, an important error mode involves coherent reflection of
the energy. With light, thiswill only occur when striking a highly polishes surface. Practi-
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cally, amobilerobot may encounter such surfacesin the form of apolished desktop, file cab-
inet or of course amirror. Unlike ultrasonic sensors, laser rangefinders cannot detect the
presence of optically transparent materials such as glass, and this can be a significant obsta-
clein environments, for example museums, where glass is commonly used.

4.1.6.2 Triangulation-based Active Ranging

Triangulation-based ranging sensors use geometrical properties manifest in their measuring
strategy to establish distance readings to objects. The simplest class of triangul ation-based
rangers are active because they project aknown light pattern (e.g. apoint, aline or atexture)
onto the environment. The reflection of the known pattern is captured by a receiver and,
together with known geometric values, the system can use smple triangulation to establish
range measurements. If the receiver measures the position of the reflection along a single
axis, we call the sensor an optical triangulation sensor in 1D. If the receiver measures the
position of the reflection along two orthogonal axes, we call the sensor a structured light sen-
sor. These two sensor types are described in the two subsections below.




4 Perception v9

L D

Laser / Collimated beam

K

L ’ P
« J'_ - — Transmitted Beam
lens = tmme=ec Reflected Beam
Position-Sensitive Device (PSD) D = fl:
or Linear Camera X

Fig4.13 Principle of 1D laser triangulation

Fig4.14 A commercially available, low-cost optical triangulation sensor: the Sharp
GP-series infrared rangefinders provide either analog or digital distance
measures and cost only about $15.

Optical Triangulation (1D sensor)

The principle of optical triangulation in 1D is straightforward, as depicted in figure 4.13. A
collimated beam (e.g. focused infrared L.E.D., laser beam) is transmitted toward the target.
Thereflected light is collected by alensand projected onto a position sensitive device (PSD)
or linear camera. Given the geometry of figure 4.13 the distance D is given by

(4.12)

The distance is proportional to 1/x, therefore the sensor resolution is best for close objects
and becomes poor at a distance. Sensors based on this principle are used in range sensing up
to one or two meters, but also in high precision industrial measurements with resolutionsfar
below one pm.

Optical triangul ation devices can provide relatively high accuracy with very good resolution
(for close objects). However, the operating range of such adeviceisnormally fairly limited
by geometry. For example, the optical triangulation sensor pictured in Figure 4.14 operates
over adistance range of between 8cm and 80cm. Itisinexpensive ascompared to ultrasonic
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and laser rangefinder sensors. Although more limited in range than sonar, the optical trian-
gulation sensor has high bandwidth and does not suffer from cross-sensitivitiesthat are more
common in the sound domain.

Structured Light (2D sensor)

If one replaced the linear camera or PSD of an optical triangulation sensor with a two-di-
mensional receiver such asaCCD or CMOS camera, then one can recover distanceto alarge
set of pointsinstead of to only one point. The emitter must project aknown pattern, or struc-
tured light, onto the environment. Many systems exist which either project light textures
(fig. 4.15b) or emit collimated light (possibly laser) by means of arotating mirror. Yet an-
other popular alternative is to project alaser stripe (fig. 4.15a) by turning alaser beam into
aplaneusing aprism. Regardless of how it is created, the projected light has aknown struc-
ture, and therefore the image taken by the CCD or CMOS receiver can befiltered to identify
the pattern’s reflection.

Note that the problem of recovering depthisin this casefar simpler than the problem of pas-
sive image analysis. In passive image analysis, as we discuss later, existing featuresin the
environment must be used to perform correlation, while the present method projects a
known pattern upon the environment and thereby avoids the standard correlation problem

b
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Fig4.15 a) Principle of active two dimensional triangulation
b) Other possible light structures
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altogether. Furthermore, the structured light sensor is an active device; so, it will continue
to work in dark environments as well as environments in which the objects are featureless
(e.g. uniformly colored and edgeless). In contrast, stereo vision would fail in such texture-
free circumstances.

Figure 4.15¢c shows a one-dimensional active triangulation geometry. We can examine the
trade-off in the design of triangulation systems by examining the geometry in figure 4.15c.
The measured values in the system are a and u, the distance of the illuminated point from
the origin in the imaging sensor. (Note the imaging sensor here can be acamera or an array
of photo diodes of a position sensitive device (e.g. a 2D PSD).

From figure 4.15c, ssimple geometry shows that:

_ bOu . _ bOf
X= foota—u’ %7 feota—u (4.12)
wheref isthe distance of the lensto theimaging plane. In the limit, the ratio of image reso-
lution to range resolution is defined as the triangulation gain Gy, and from equation 4.12 is

given by:

ou _ _bOf
i Gp == (4.13)
z
Thisshowsthat the ranging accuracy, for agiven image resolution, is proportional to source/
detector separation b and focal length f, and decreases with the square of therange z. In a
scanning ranging system, there isan additional effect on the ranging accuracy, caused by the

measurement of the projection angle a. From equation 4.12 we see that:

.2
Jo _ _ bsina
0_2 =G, = —22 (4.14)

We can summarize the effects of the parameters on the sensor accuracy as follows:

» Basdlinelength b: the smaller b is the more compact the sensor can be. The larger b
isthe better the range resolution will be. Note also that although these sensors do not
suffer from the correspondence problem, the disparity problem still occurs. Asthe
baseline length b isincreased, one introduces the chance that, for close objects, the
illuminated point(s) may not be in the receiver’sfield of view.

 Detector length and focal length f: A larger detector length can provide either alarger
field of view or an improved range resolution or partial benefitsfor both. Increasing
the detector length however means alarger sensor head and worse electrical charac-
teristics (increase in random error and reduction of bandwidth). Also, a short focal
length gives alarge field of view at the expense of accuracy and vice versa.
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At onetime, laser stripe-based structured light sensors were common on several mobile ro-
bot bases as an inexpensive alternative to laser rangefinding devices. However, with thein-
creasing quality of laser rangefinding sensors in the 1990’ s the structured light system has
become relegated largely to vision research rather than applied mobile robotics.

4.1.7 Motion/Speed sensors

Some sensors directly measure the relative motion between the robot and its environment.
Since such motion sensors detect relative motion, so long as an object is moving relative to
the robot’ s reference frame, it will be detected and its speed can be estimated. There are a
number of sensors that inherently measure some aspect of motion or change. For example,
aPyroelectric sensor detects changein heat. When a human walks across the sensor’ sfield
of view, his motion triggers a change in heat in the sensor’ s reference frame. In the next
subsection, we describe an important type of motion detector based on the Doppler effect.
These sensors represent a well-known technology with decades of general applications be-
hind them. For fast-moving mobile robots such as autonomous highway vehicles and un-
manned flying vehicles, Doppler-based motion detectors are the obstacl e detection sensor of
choice.

4.1.7.1 Doppler Effect Based Sensing (radar or sound)

Anyonewho has noticed the change in siren pitch that occurs when an approaching fire truck
passes by is familiar with the Doppler effect.
A transmitter emits an electromagnetic or sound wave with a frequency f;. It is either re-

ceived by areceiver (fig. 4.16a) or reflected from an object (fig. 4.16b). The measured fre-
quency f, at thereceiver isafunction of the relative speed v between transmitter and receiver

according to

fo=forr (4.15)

if the transmitter is moving and

fo=f(1+v/ ¢ (4.16)
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if the receiver is moving.

In the case of areflected wave (fig. 4.16b) there is a factor of two introduced, since any
change xin relative separation affects the round-trip path length by 2x. Furthermore, in such
situationsiit is generally more convenient to consider the change in frequency Af, known as
the Doppler shift, as opposed to the Doppler frequency notation above.

2f,vcosB
Af = ft_fl’ = c (417)
_ Af0Oc
Y7 2f,cosb (4.18)

where:
Af = Doppler frequency shift
0 = relative angle between direction of motion and beam axis

The Doppler effect applies to sound and electromagnetic waves. It has a wide spectrum of
applications:

» Sound waves: e.g. industrial process control, security, fish finding, measure of
ground speed

 Electromagnetic waves. e.g. vibration measurement, radar systems, object tracking

A current application areais both autonomous and manned highway vehicles. Both micro-
wave and laser radar systems have been designed for this environment. Both systems have
equivalent range, but laser can suffer when visual signals are deteriorated by environmental
conditions such asrain, fog, etc. Commercial microwave radar systems are aready avail-
able for installation on highway trucks. These systems are called VORAD (vehicle on-
board radar) and have atotal range of approximately 150m. With an accuracy of approxi-
mately 97%, these systems report range rate from 0 to 160 km/hr with a resolution of 1 km/
hr. The beam is approximately 4° wide and 5° in elevation. One of the key limitations of
radar technology is its bandwidth. Existing systems can provide information on multiple
targets at approximately 2 Hz.

4.1.8 Vision-based sensors

Visionisour most powerful sense. It provides us with an enormous amount of information
about the environment and enablesrich, intelligent interaction in dynamic environments. It
istherefore not surprising that agreat deal of effort has been devoted to providing machines
with sensors that mimic the capabilities of the human vision system. Thefirst step in this
process is the creation of sensing devices that capture the same raw information- light- that
the human vision system uses. The next subsection describes the two current technologies
for creating vision sensors. CCD and CMOS. These sensors have specific limitationsin per-
formance when compared to the human eye, and it isimportant for the reader to understand
these limitations. Afterwards, the second and third subsections describe vision-based sen-
sors that are commercially available, like the sensors discussed previoudly in this chapter,
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Fig4.17 Commercially available CCD chips and CCD cameras. Because thistech-
nology is relatively mature, cameras are available in widely varying forms
and costs [ http: //www.howstuffworks.convdigital -camera2.htm].

along with their disadvantages and most popular applications.

4.1.8.1 CCD and CMOS sensors

The Charged Coupled Device (CCD) is the most popular basic ingredient of robotic vision
systemstoday. The CCD chip (see Fig. 4.17) isan array of light-sensitive picture elements,
or pixels, usually with between 20,000 and 2 million pixelstotal. Each pixel can be thought
of asalight-sensitive, discharging capacitor that is5 to 25 micronsin size. First, the capac-
itors of all pixels are charged fully, then the integration period begins. As photons of light
strike each pixel, they liberate electrons, which are captured by electric fields and retained
at the pixel. Over time, each pixel accumulates avarying level of charge based on the total
number of photons that have struck it. After the integration period is complete, the relative
charges of all pixelsneed to befrozen and read. InaCCD, thereading processis performed
at one corner of the CCD chip. The bottom row of pixel charges are transported to this cor-
ner and read, then the rows above shift down and the processrepeats. This meansthat each
charge must be transported across the chip, and itiscritical that the value be preserved. This
requires specialized control circuitry and custom fabrication techniques to ensure the stabil-
ity of transported charges.

The photodiodes used in CCD chips (and CMOS aswell) are not equally sensitive to all fre-
guenciesof light. They are sensitive to light between 400nm and 1000nm wavelength. Itis
important to remember that photodiodes are |ess sensitive to the ultraviol et part of the spec-
trum (e.g. blue) and are overly sensitive to the infrared portion (e.g. heat).

Y ou can see that the basic light-measuring processis colorless: it isjust measuring the total
number of photons that strike each pixel in the integration period. There are two common
approaches for creating color images. If the pixels on the CCD chip are grouped into 2x2
sets of 4, then red, green and blue dyes can be applied to acolor filter so that each individual
pixel receives only light of one color. Normally, two pixels measure green while one pixel
each measuresred and bluelight intensity. Of course, this 1-chip color CCD hasageometric
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resolution disadvantage. The number of pixelsin the system has been effectively cut by a
factor of 4, and therefore the image resolution output by the CCD camerawill be sacrificed.

The 3-chip color camera avoids these problems by splitting the incoming light into three
complete (lower intensity) copies. Three separate CCD chipsreceive thelight, with onered,
green or bluefilter over each entire chip. Thus, in parale, each chip measures light inten-
sity for one color, and the camera must combine the CCD chips' outputs to create a joint
color image. Resolutionispreserved in this solution, athough the 3-chip color cameras are,
as onewould expect, significantly more expensive and therefore more rarely used in mobile
robotics.

Both 3-chip and single chip color CCD cameras suffer from the fact that photodiodes are
much more sensitive to the near-infrared end of the spectrum. This means that the overall
system detects blue light much more poorly than red and green. To compensate, the gain
must be increased on the blue channel, and this introduces greater absolute noise on blue
than on red and green. It is not uncommon to assume at least 1 - 2 bits of additional noise
on the blue channel. Although there is no satisfactory solution to this problem today, over
time the processes for blue detection have been improved and we expect this positive trend
to continue.

The CCD camera has severa camera parameters that affect its behavior. 1n some cameras,
these parameter values are fixed. In others, the values are constantly changing based on
built-in feedback loops. In higher-end cameras, the user can modify the values of these pa-
rametersviasoftware. Theirisposition and shutter speed regul ate the amount of light being
measured by the camera. Theirisissimply a mechanica aperture that constricts incoming
light, just as in standard 35mm cameras. Shutter speed regulates the integration period of
the chip. In higher-end cameras, the effective shutter speed can be as brief at 1/30,000s and
aslong as 2s. Camera gain controls the overall amplification of the analog signal, prior to
A/D conversion. However, it isvery important to understand that, even though the image
may appear brighter after setting high gain, the shutter speed and iris may not have changed
at al. Thusgain merely amplifies the signal, and amplifies along with the signa al of the
associated noise and error. Although useful in applications where imaging is done for hu-
man consumption (e.g. photography, television), gainisof little value to amobileroboticist.

In color cameras, an additional control exists for white balance. Depending on the source
of illumination in ascene (e.g. fluorescent lamps, incandescent lamps, sunlight, underwater
filtered light, etc.) the relative measurements of red, green and blue light that define pure
white light will change dramatically. The human eyes compensate for al such effects in
ways that are not fully understood, however, the camera can demonstrate glaring inconsis-
tenciesin which the same table looks blue in one image, taken during the night, and yellow
in another image, taken during the day. White balance controls enable the user to change
therelativegain for red, green and bluein order to maintain more consistent col or definitions
in varying contexts.

The key disadvantages of CCD cameras are primarily in the areas of inconstancy and dy-
namic range. As mentioned above, a number of parameters can change the brightness and
colors with which a camera creates its image. Manipulating these parameters in a way to

R. Siegwart, EPFL, lllah Nourbakhsh, CMU



106 Autonomous Mobile Robots

provide consistency over time and over environments, for example ensuring that a green
shirt always looks green, and something dark grey is always dark grey, remains an open
problem in the vision community. For more details in the fields of color constancy and lu-
minosity constancy, consult [Roland, see text notes for the right reference for here! (Kobus
Barnard isthe ref)].

The second class of disadvantages relates to the behavior of a CCD chip in environments
with extreme illumination. In cases of very low illumination, each pixel will receive only a
small number of photons. The longest possible integration period (i.e. shutter speed) and
cameraoptics (i.e. pixel size, chip size, lensfocal length and diameter) will determine the
minimum level of light for which the signal is stronger than random error noise. In cases of
very high illumination, a pixel fills its well with free electrons and, as the well reaches its
limit, the probability of trapping additional electrons falls and therefore the linearity be-
tween incoming light and electrons in the well degrades. Thisistermed saturation and can
indicate the existence of a further problem related to cross-sensitivity. When a well has
reached its limit, then additional light within the remainder of the integration period may
cause further charge to leak into neighboring pixels, causing them to report incorrect values
or even reach secondary saturation. This effect, called blooming, means that individual pix-
el values are not truly independent.

The camera parameters may be adjusted for an environment with a particular light level, but
the problem remains that the dynamic range of a camerais limited by the well capacity of
the individual pixels. For example, a high quality CCD may have pixels that can hold
40,000 electrons. Thenoiselevel for reading thewell may be 11 electrons, and therefore the
dynamic range will be 40,000:11, or 3,600:1, which is 35dB.

CMOS technology

The Complementary Metal Oxide Semiconductor (CMOS) chip is a significant departure
fromthe CCD. Ittoo hasan array of pixels, but located al ongside each pixel are several tran-
sistorsspecific to that pixel. Just asin CCD chips, all of the pixels accumulate charge during
the integration period. During the data collection step, the CMOS takes a new approach:
the pixel-specific circuitry next to every pixel measures and amplifiesthe pixel’ssignal, all
in parallel for every pixel inthearray. Using more traditional traces from general semicon-
ductor chips, the resulting pixel values are all carried to their destinations.

CMOS has a number of advantages over CCD technologies. First and foremost, thereisno
need for the specialized clock driversand circuitry required in the CCD to transfer each pix-
el’sclock down all of thearray columnsand acrossall of itsrows. Thisalso meansthat spe-
cialized semiconductor manufacturing processes are not required to create CMOS chips.
Therefore, the same production lines that create microchips can create inexpensive CMOS
chipsas well (see Fig. 4.18). The CMOS chip is so much simpler that it consumes signifi-
cantly less power; incredibly, it operates with a power consumption that is 1/100 the power
consumption of aCCD chip. In amobilerobot, power isascarce resource and thereforethis
is an important advantage.

On the other hand, the CMOS chip also faces severa disadvantages. Most importantly, the
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Fig4.18 A commercially available, low-cost CMOS camera with lens attached.

circuitry next to each pixel consumes valuable real estate on the face of the light-detecting
array. Many photons hit the transistors rather than the photodiode, making the CMOS chip
significantly less sensitive than an equivalent CCD chip. Second, the CMOS technology is
younger and, asaresult, the best resolution that one can purchasein CM OSformat continues
to be far inferior to the best CCD chips available. Time will doubtless bring the high end
CMOS imagers closer to CCD imaging performance.

Given this summary of the mechanism behind CCD and CMOS chips, one can appreciate
the sensitivity of any vision-based robot sensor to its environment. Ascompared to the hu-
man eye, these chips all have far poorer adaptation, cross-sensitivity and dynamic range. As
aresult, vision sensors today continueto be fragile. Only over time, as the underlying per-
formance of imaging chipsimproves, will significantly more robust vision-based sensorsfor
mobile robots be available.

4.1.8.2 Visual ranging sensors

Range sensing is extremely important in mobile robotics asit is abasic input for successful
obstacle avoidance. Aswe have seen earlier in this chapter, anumber of sensors are popular
in robotics explicitly for their ability to recover depth estimates: ultrasonic, laser rangefind-
er, optical rangefinder, etc. Itisnatural to attempt to implement ranging functionality using
vision chips as well.

However, a fundamental problem with visual images makes rangefinding relatively diffi-
cult. Any vision chip collapses the three-dimensional world into a two-dimensional image
plane, thereby losing depth information. If one can make strong assumptions regarding the
size of objects in the world, or their particular color and reflectance, then one can directly
interpret the appearance of the two-dimensional image to recover depth. But such assump-
tionsarerarely possiblein real-world mobile robot applications. Without such assumptions,
asingle picture does not provide enough information to recover spatial information.

The general solution is to recover depth by looking at several images of the scene to gain
more information, hopefully enough to at least partially recover depth. The images used
must be different, so that taken together they provide additional information. They could
differ in viewpoint, yielding stereo or motion algorithms. An alternative isto create differ-
ent images, not by changing the viewpoint, but by changing the camera geometry, such as
the focus position or lensiris. Thisis the fundamental idea behind depth from focus and
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*. 2

focal plane
image plane

Fig4.19 Depiction of the camera optics and itsimpact on the image. In order to get
a sharp image, the image plane must coincide with the focal plane. Other-
wisetheimage of the point (x,y,z) will be blurred in theimage as can be seen
in the drawing above.

depth from defocus techniques.

In the next section, we outline the general approach to the depth from focus techniques be-
cause it presents a straightforward and efficient way to create a vision-based range sensor.
Subsequently, we present detailsfor the correspondence-based techniques of depth from ste-
reo and motion.

Depth from focus

The depth from focus class of techniques relies on the fact that image properties not only
change as a function of the scene, but also as a function of the camera parameters. There-
lationship between camera parameters and image propertiesis depicted in figure 4.19.

The basic formula governing image formation relates the distance of the object from the
lens, d in the above figure, to the distance e from the lens to the focal point, based on the
focal length f of the lens:

1
f

O I

+

DI

(4.19)

If the image plane is located at distance e from the lens, then for the specific object voxel
depicted, al light will be focused at a single point on the image plane and the object voxel
will be focused. However, when the image planeis not at e, asis depicted in Figure (4.19),
then the light from the object voxel will be cast on the image plane as ablur circle. Toa
first approximation, the light is homogeneously distributed throughout this blur circle, and
the radius R of the circle can be characterized according to the equation:

_ Lo

R_Ze

(4.20)

L is the diameter of the lens or aperture and 0 is the displacement of the image plan from
the focal point.

Given these formulae, several basic optical effectsare clear. For example, if the aperture or
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Fig 4.20 Two images of the same scene taken with a camera at two different focusing
positions. Note the significant change in texture sharpness between the
near surface and far surface. The sceneis an outdoor concrete step.

lensisreduced to apoint, asin apin-hole camera, then the radius of the blur circle approach-
eszero. Thisisconsistent with the fact that decreasing the iris aperture opening causes the
depth of field to increase until all objectsare in focus. Of course, the disadvantage of doing
so isthat we are allowing lesslight to form the image on theimage plane and so thisis prac-
tical only in bright circumstances.

The second property that can be deduced from these optics equations rel ates to the sensitiv-
ity of blurring as a function of the distance from the lens to the object. Suppose the image
planeis at a fixed distance 1.2 from a lens with diameter L = 0.2 and focal length f = 0.5.
We can see from Equation (4.20) that the size of the blur circle R changes proportionally
with the image plane displacement &. If the object is at distance d = 1, then from Equation
(4.19) we can compute e=1 and therefore & = 0.2. Increase the object distanceto d = 2 and

asaresult d =0.533. Using Equation (4.20) in each case we can compute R=0.02 R=0.08
respectively. This demonstrates high sensitivity for defocusing when the object is close to
the lens.

In contrast suppose the object isat d = 10. In this case we compute e = 0.526. But if the
object is again moved one unit, to d = 11, then we compute e = 0.524. Then resulting blur
circlesare R= 0.117 and R=0.129, far less than the quadrupling in R when the obstacleis
1/10 the distance from the lens. This analysis demonstrates the fundamental limitation of
depth from focus techniques: they lose sensitivity as objects move further away (given a
fixed focal length). Interestingly, this limitation will turn out to apply to virtually all visual
ranging techniques, including depth from stereo and depth from motion.

Nevertheless, camera optics can be customized for the depth range of the intended applica-
tion. For example, a"zoom" lenswith avery largefocal length f will enablerange resolution
at significant distances, of course at the expense of field of view. Similarly, alargelensdi-
ameter, coupled with avery fast shutter speed, will lead to larger, more detectable blur cir-
cles.

Given the physical effects summarized by the above equations, one can imagine a visual
ranging sensor that makes use of multipleimagesinwhich cameraopticsarevaried (e.g. im-

age plane displacement &) and the same scene is captured (see Fig. 4.20). In fact this ap-
proach is not a new invention. The human visual system uses an abundance of cues and
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Fig4.21 The Cheshm robot uses three monochrome cameras asits only ranging sen-
sor for obstacle avoidance in the context of humans, static obstacles such as
bushes and convex obstacles such asledges and steps. Roland, the picture
Im sending you is Cheshm.jpg

techniques, and one system demonstrated in humansis depth from focus. Humans vary the
focal length of their lens continuously at a rate of about 2 Hz. Such approaches, in which
the lens optics are actively searched in order to maximize focus, are technically called depth
fromfocus. In contrast, depth from defocus means that depth is recovered using a series of
images that have been taken with different camera geometries.

Depth from focus methods are one of the smplest visual ranging techniques. To determine
the range to an object, the sensor smply moves the image plane (via focusing) until maxi-
mizing the sharpness of the object. When the sharpness is maximized, the corresponding
position of the image plane directly reportsrange. Some autofocus cameras and virtually all
autofocus video cameras use this technique. Of course, amethod is required for measuring
the sharpness of an image or an object within the image. The most common techniques are
approximate measurements of the sub-image gradient:

sharpness; = Z|I(x, y)—l(x=1, y)| (4.22)
X,y
sharpness, = §(1(x, y)-1(x~2 y—2))? (4.22)
Xy

A significant advantage of the horizontal sum of differences technique (Equation (4.21)) is
that the calculation can be implemented in analog circuitry using just arectifier, alow-pass
filter and a high-passfilter. Thisisacommon approach in commercial cameras and video
recorders. Such systems will be sensitive to contrast along one particular axis, although in
practical termsthisisrarely an issue.

However depth from focus is an active search method and will be slow becauseit takestime
to change the focusing parameters of the camera, using for example a servo-controlled fo-
cusing ring. For this reason this method has not been applied to mobile robots.

A variation of the depth from focus technique has been applied to a mobile robot, demon-
strating obstacle avoidancein avariety of environments aswell as avoidance of concave ob-
stacles such as steps and ledges [95]. This robot uses three monochrome cameras placed as
close together as possible with different, fixed lens focus positions (Fig. 4.21).
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Severa times each second, all three frame-synchronized cameras simultaneously capture
three images of the same scene. The images are each divided into five columns and three
rows, or 15 subregions. The approximate sharpness of each region iscomputed using avari-
ation of Equation (4.22), leading to atotal of 45 sharpness values. Note that Equation 22
calculates sharpness along diagonals but skipsonerow. Thisisdueto asubtle but important
issue. Many cameras produce images in interlaced mode. This meansthat the odd rows are
captured first, then afterwards the even rows are captured. When such a camerais used in
dynamic environments, for example on amoving robot, then adjacent rows show the dynam-
ic scene at two different time points, differing by up to 1/30 seconds. The result is an arti-
ficial blurring due to motion and not optical defocus. By comparing only even-number rows
we avoid thisinterlacing side effect.

Recall that the three images are each taken with a camera using a different focus position.
Based on the focusing position, we call each imageclose, mediumor far. A 5x3 coarse depth
map of the scene is constructed quickly by simply comparing the sharpness values of each
three corresponding regions. Thus, the depth map assigns only two bits of depth information
to each region using the values close, mediumand far. Thecritical step isto adjust the focus
positions of all three cameras so that flat ground in front of the obstacle results in medium
readings in one row of the depth map. Then, unexpected readings of either close or far will
indicate convex and concave obstacles respectively, enabling basic obstacle avoidance in
the vicinity of objects on the ground as well as drop-offs into the ground.

Although sufficient for obstacle avoidance, the above depth from focus algorithm presents
unsatisfyingly coarse rangeinformation. The alternative isdepth fromdefocus, the most de-
sirable of the focus-based vision techniques.

Depth from defocus methods take as input two or more images of the same scene, taken with
different, known camerageometry. Given the imagesand the camera geometry settings, the
goal isto recover the depth information of the three-dimensional scene represented by the
images. We begin by deriving the relationship between the actual scene properties (irradi-
ance and depth), camerageometry settings and theimage g that isformed at theimage plane.

Thefocused image f(x,y) of asceneisdefined asfollows. Consider apinhole aperture (L=0)
inlieu of thelens. For every point p at position (x,y) on theimage plane, draw aline through
the pinhole aperture to the corresponding, visible point P in the actual scene. We define
f(x,y) astheirradiance (or light intensity) at p dueto the light from P. Intuitively, f(x,y) rep-
resents the intensity image of the scene perfectly in focus.

The point spread function h(xg, Yo Xt Y5 Ry y) is defined as the amount of irradiance
from point P in the scene (corresponding to (X, Y;) in the focused image f that contributes
to point (xg, yg) in the observed, defocused image g. Note that the point spread function

depends not only upon the source, (X;, Yy;), and the target, (xg, yg), but also on R, the blur

circleradius. R, in turn, depends upon the distance from point P to the lens, as can be seen
by studying Equations (4.19) and (4.20).

Given the assumption that the blur circle is homogeneous in intensity, we can define h as
follows:
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1 . 2 2
= if ((xg=%)° + (Yg—¥p)?) R
h(Xg Yg Xt ¥ Re y) = |TR (4.23)

0 if ((xg—%)" + (Yg—yp)*) >R’

Intuitively, point P contributesto the image pixel ( Xg yg) only when the blur circle of point
P containsthe point (xg, yg) . Now we can write the general formulathat computesthe value

of each pixel intheimage, (X, y), asafunction of the point spread function and the focused
image:

0%y Vo) = ThXg Vg % Yo Re X ¥) (4.24)
X,y

This equation relates the depth of scene points viaR to the observed imageg. Solving for R
would provide us with the depth map. However, this function has another unknown, and
that isf, the focused image. Therefore, one image alone is insufficient to solve the depth
recovery problem, assuming we do not know how the fully focused image would look.

Given two images of the same scene, taken with varying camera geometry, in theory it will
be possible to solvefor g aswell as R because f stays constant. There are a number of algo-
rithms for implementing such a solution accurately and quickly. The classical approach is
known as inverse filtering because it attempts to directly solve for R, then extract depth in-
formation from this solution. One specia case of the inverse filtering solution has been
demonstrated with a real sensor. Suppose that the incoming light is split and sent to two
cameras, one with alarge aperture and the other with a pinhole aperture [94]. The pinhole
aperture results in a fully focused image, directly providing the value of f. With this ap-
proach, there remains a single equation with a single unknown, and so the solution is
straightforward. Pentland has demonstrated such a sensor, with several meters of range and
better than 97% accuracy. Note, however, that the pinhole aperture necessitates a large
amount of incoming light, and that furthermore the actual image intensities must be normal-
ized so that the pinhole and large-diameter images have equivalent total radiosity. Morere-
cent depth from defocus methods use statistical techniques and characterization of the
problem as a set of linear equations [93]. These matrix-based methods have recently
achieved significant improvements in accuracy over all previous work.

In summary, the basic advantage of the depth from defocus method is its extremely fast
speed. The equations above do not require search algorithms to find the solution, as would
the correlation problem faced by depth from stereo methods. Perhaps more importantly, the
depth from defocus methods also need not capture the scene at different perspectives, and
are therefore unaffected by occlusions and the disappearance of objectsin a second view.

Aswith all visual methods for ranging, accuracy decreases with distance. Indeed, the accu-
racy can be extreme; these methods have been used in microscopy to demonstrate ranging
at the micrometer level.
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Fig 4.22 Idealized camera geometry for stereo vision

Stereo vision

Stereo vision is one of several techniques in which we recover depth information from two
images that depict the scene from different perspectives. The theory of depth from stereo
has been well understood for years, while the engineering challenge of creating a practical
stereo sensor has been formidable [15, 16, 22]. Recent times have seen the first successes
on this front, and so after presenting a basic formalism of stereo ranging, we describe the
state of the art algorithmic approach and one of the recent, commercially available stereo
Sensors.

The geometry of stereo

First, we consider asimplified case in which two cameras are placed with their optical axes
parallel, at a separation (called the baseline) of b, shown in Figure 4.22.

In thisfigure, a point on the object is described as being at coordinate (x,y,2) with respect to
a central origin located between the two camera lenses. The position of this point’s light
rays on each camera simage is depicted in camera-specific local coordinates. Thus, the or-

igin for the coordinate frame referenced by points of the form (x;,y, ) islocated at the center
of lensl.

From the figure 4.22, it can be seen that

x—h/ 2

X
: . d T = . (4.25)

X x+b/ 2
— = =——an

and (out of the plane of the page)

R. Siegwart, EPFL, lllah Nourbakhsh, CMU



114 Autonomous Mobile Robots
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wheref is the distance of both lenses to the image plane. Note from equation 4.25 that:

X=X _ b
f z

(4.27)

where the difference in the image coordinates, X, - X, is called the disparity. Thisis anim-

portant term in stereo vision, because it is only by measuring disparity that we can recover
depth information. Using the disparity and solving al three above equations provides for-
mulae for the three dimensions of the scene point being imaged:

X +x) 2 +vy)/ 2
x:b—('x_rz( : y:b—(ylx%l - z=0bh f (4.28)
| r | r

Observations from these equations are as follows:

1. Distanceisinversely proportional to disparity. The distance to near objects can there-
fore be measured more accurately than that to distant objects, just as with depth from
focustechniques. In general thisisalright for mobile robotics, because for navigation
and obstacle avoidance closer objects are of higher importance.

2. Disparity is proportional to b. For a given disparity error, the accuracy of the depth
estimate increases with increasing baseline b.

3. Asbisincreased, because the physical separation between the camerasisincreased,
some objects may appear in one camera but not in the other. Such objects by defini-
tion will not have a disparity and therefore will not be ranged successfully.

4. A point in the scene visible to both cameras produces apair of image points (onevia
each lens) known as a conjugate pair. Given one member of the conjugate pair, we
know that the other member of the pair lies somewhere along aline known as an epi-
polar line. Inthe case depicted by Fig. (4.22), because the cameras are perfectly
aligned with one-another, the epipolar lines are horizonta lines (i.e. along the x di-
rection).

However the assumption of perfectly aligned cameras is normally violated in practice. In
order to optimize the range of distances that can be recovered, it is often useful to turn the
cameras inward towards one-another for example. Figure 4.22 shows the orientation vec-
torsthat are necessary to solve this more general problem. We will express the position of
a scene point P in terms of the reference frame of each camera separately. The reference
frames of the cameras need not be aligned, and can indeed be at any arbitrary orientation
relative to one-another.

For example the position of point P will be described in terms of the left camera frame as:
'y = (X|, ¥, Z;). Note that these are the coordinates of point P, not the position of its
counterpart in the left cameraimage. P can aso be described in terms of the right camera
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frameas: ', = (X, ¥,, Z,). If wehavearotation matrix R and translation matrix r re-

lating the relative positions of cameras| and r, then we can define r', intermsof r';:
r'y = RO, +r, (4.29)

whereRisa3 x 3 rotation matrix and rq = offset trand ation matrix between thetwo cameras.

Expanding equation 4.29 yields:

Xy M1 12 Fagl | X Mot
Yol = [To1 T2 Ton| Y| {To2 (4.30)
zZ, F31 3 fa3| |2 F'o3

The above equations have two uses:

1. Wecouldfind r', if weknew R, r'; andr,. Of coursg, if weknew r', then wewould

have complete information regarding the position of P relative to theleft camera, and
so the depth recovery problem would be solved. Notethat, for perfectly aligned cam-
erasasin Figure (4.22), R=I (the identify matrix).

2. We could calibrate the system and find r4, 15 ... given aset of conjugate pairs
{(X'I’ y'I! z.I)’ (X'r’ y'r! Z'r)}'

In order to carry out the calibration step of step 2 above, we must find values for 12 un-
knowns. Therefore calibration will require 12 equations. This means that calibration re-
quires, for agiven scene, 4 conjugate points. The standard approach to calibration involves
creation and use of a calibration tool, often a white cube or panel with black marks that can
easily be located with simple vision algorithms. The known object is placed at several ori-
entations to the stereo camera system and a number of conjugate points are quickly identi-
fied. Research continues on robust methods for adaptively adjusting calibration parameters
on-the-fly.

Assuming that the calibration step is complete, we can now formalize the range recovery
problem. To begin with, we do not have the position of P available, and therefore

(X, ¥}, Z)) and (X,, ¥,, Z,) are unknowns. Instead, by virtue of the two cameras we
have pixels on the image planes of each camera, (X, y;, z) and (X, Y,, z). Giventhe

focal length f of the cameras we can relate the position of P to the left cameraimage asfol-
lows:
X _ X Yi _Yi

L et us concentrate first on recovery of thevalues Z, and Z, . From equations 4.30 and 4.31
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we can compute these values from any two of the following equations:

X, Y, X,
1y et rlq%il *Top = ?rzr (4.32)
X Y Yr
217 Fr2T rzzgz'l oz = ?rzr (4.33)
X Y : _
a1y Yl * fg:%zl +log = Z; (4.34)

The same process can be used to identify valuesfor X' and y', yielding completeinformation
about the position of point P. However, using the above equations requires us to have iden-
tified conjugate pairsin the left and right cameraimages. image points that originate at the
same object point P in the scene. This fundamental challenge, identifying the conjugate
pairs and thereby recovering disparity, isthe correspondence problem. Intuitively, the prob-
lemis, given two images of the same scene from different perspectives, how can weidentify
the same object points in both images? For every such identified object point, we will be
ableto recover its 3D position in the scene.

The correspondence problem, or the problem of matching the same object in two different
inputs, has been one of the most challenging problemsin the computer vision field and the
artificial intelligence field. The basic approach in nearly all proposed solutions involves
converting each image in order to create more stable and more information-rich data. With
this more reliable data in hand, stereo agorithms search for the best conjugate pairs repre-
senting as many of the images pixels as possible.

The search process is well understood, but the quality of the resulting depth maps depends
heavily upon the way in which images are treated to reduce noise and improve stability.
This has been the chief technology driver in stereo vision algorithms, and one particular
method has become widely used in commercially available systems.

Zero crossings of Laplacian of Gaussian

The zero crossings of Laplacian of Gaussian (ZLoG) isastrategy for identifying featuresin
the left and right camera images that are stable and will match well, yielding high-quality
stereo depth recovery. This approach has seen tremendous success in the field of stereo vi-
sion, having been implemented commercially in both software and hardware with good re-
sults. It has led to several commercia stereo vision systems and yet it is extremely smple.
Here we summarize the approach and explain some of its advantages.

The core of ZLoG is the Laplacian transformation of an image. Intuitively, thisis nothing
more than the second derivative. Formally, the Laplacian L(x,y) of animage with intensities
[(xy) is defined as:
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L(X y) = —5+— (4.35)
ox~ ay

So the Laplacian represents the second derivative of the image, and is computed along both
axes. Such atransformation, called aconvolution, must be computed over the discrete space
of image pixel values, and therefore an approximation of Equation (4.35) is required for ap-
plication:

L=POI (4.36)

We depict adiscrete operator P, called akernel, that approximates the second derivative op-
eration along both axesasa 3 x 3 table:

1-41 (4.37)

Application of the kernel P to convolve animage is straightforward. The kernel definesthe
contribution of each pixel in the image to the corresponding pixel in the target as well asits
neighbors. For example, if apixel (5,5) intheimage | has value 1(5,5)=10, then application
of the kernel depicted by Equation (4.37) causes pixel 1(5,5) to make the following contri-
butions to the target image L:

L(5,5) +=-40;

L(4,5) += 10;

L(6,5) += 10;

L(5,4) += 10;

L(5,6) += 10;
Now consider the graphical example of a step function, representing a pixel row in which
the intensities are dark, then suddenly thereisajump to very bright intensities. The second
derivative will have a sharp positive peak followed by a sharp negative peak, as depicted in
Figure (4.23). The Laplacian is used because of this extreme sengitivity to changes in the
image. But the second derivative isin fact over-sensitive. We would like the Laplacian to
trigger large peaks due to real changes in the scen€e’ s intensities, but we would like to keep
signal noise from triggering fal se peaks.
For the purpose of removing noise dueto sensor error, the ZL oG algorithm applies Gaussian

smoothing first, then executes the Laplacian convolution. Such smoothing can be effected
via convolution with a3 x 3 table that approximates Gaussian smoothing:
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Fig4.23 Sep function example of second derivative shape and the impact of noise.
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Gaussian smoothing does not really removeerror, it merely distributesimage variations over
larger areas. Thisshould seem familiar. In fact, Gaussian smoothing is almost identical to
the blurring caused by defocused optics. It is, nonetheless, very effective at removing high
frequency noise, just as blurring removesfine-grained detail. Notethat, like defocusing, this
kernel does not change the total illumination but merely redistributes it (by virtue of the di-
visor 16).

The result of Laplacian of Gaussian (LoG) image filtering is atarget array with sharp posi-
tive and negative spikes identifying boundaries of change in the original image. For exam-
ple, asharp edgeintheimagewill result in both a positive spike and anegative spike, located
on either side of the edge.

To solve the correspondence problem, we would like to identify specific featuresin LoG
that are amenable to matching between the left camera and right camerafiltered images. A
very effective feature has been to identify each zero crossing of the LoG as such afeature.
Many zero crossings do lie at edges in images, but their occurrence is somewhat broader
than that. An interesting characteristic of zero crossings is that they are very sharply de-
fined, covering just one "pixel” width in the filtered image. The accuracy can even be fur-
ther enhanced by using interpolation to establish the position of the zero crossing with sub-
pixel accuracy. All told, the accuracy of the zero crossing featuresin ZL oG have made them
the preferred features in state-of-the-art stereo depth recovery algorithms.
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Fig4.24 Extracting depth information from a stereo image
al and a2: left and right image
bl and b2: vertical edge filtered left and right image
filter =[124-2-10-2421]
c. confidence image:
bright = high confidence (good texture)
dark = low confidence (no texture)
d: depth image (disparity):
bright = close, dark = far

Stereo Vision Example
Figure 4.24 shows the various steps required to extract depth information from a stereo im-
age.

Commercial stereo vision sensors

Several commercial stereo vision depth recovery sensors have been availablefor researchers
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Fig4.25 The SYM module mounted on EPFL’s Shrimp robot.

over the past 10 years. A popular unit in mobile robotics today is the Digital Stereo Head
(or SVM) from Videre Design shown in Fig. 4.25.

The SVM uses the L aplacian of Gaussian operator, following it by tessellating the resulting
array into subregions within which the sum of absolute values are computed. The corre-
spondence problem is solved at the level of these sub-regions, a process called area corre-
lation and after correspondence is solved the results are interpolated to 1/4 pixel precision.
Animportant feature of SVM isthat it produces, not just a depth map, but distinct measures
of match quality for each pixel. Thisisvaluable because such additional information can be
used over time to eliminate spurious, incorrect stereo matches that have poor match quality.

The performance of SVM providesagood representative of the state of the art in stereo rang-
ing today. The SVM consists of sensor hardware, including two CMOS cameras and DSP
hardware. Inaddition, the SVM includes stereo vision software that makes use of a standard
computer (e.g. a Pentium processor). On a 320x240 pixel image pair, the SVM assigns one
of 32 discrete levels of disparity (i.e. depth) to every pixel at arate of 12 frames per second
(based on the speed of a 233 Mhz Pentium 11). This compares favorably to both laser
rangefinding and ultrasonics, particularly when one appreciates that ranging information
with stereo isbeing computed for not just one target point, but all target pointsin the image.

It isimportant to note that the SVM uses CM OS chipsrather than CCD chips, demonstrating
that resolution sufficient for stereo vision algorithmsiis readily available using the less ex-
pensive, power-efficient CMOS technology.

Theresolution of avision-based ranging system will depend upon the range to the object, as
we have stated before. It is instructive to observe the published resolution values for the
SVM sensor. Although highly dependent on the camera optics, using a standard 6mm focal
length lens pair, the SVM claims a resolution of 10mm at 3 meters range, and a resolution
of 60mm at 10 metersrange. These values are based on ideal circumstances, but neverthe-
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less exemplify the rapid lossin resolution that will accompany vision-based ranging.

4.1.8.3 Motion and Optical Flow

A great deal of information can be recovered by recording time varying images from afixed
(or moving) camera. Firstly we distinguish between the motion field and optical flow:

» Motion field: this assigns a velocity vector to every point in an image. If apointin
the environment moves with velocity v,, then thisinduces avelocity v; in the image

plane. It is possible to determine mathematically the relationship between v; and vj,.

» Optical flow: it can also be true that brightness patterns in the image move asthe ob-
ject that causes them moves (light source). Optical flow is the apparent motion of
these brightness patterns.

In our analysis here we assume that the optical flow pattern will correspond to the motion
field, athough thisis not always truein practice. Thisisillustrated in figure 4.26awhere a
sphere exhibits spatial variation of brightness, or shading, in the image of the sphere since
its surface is curved. If the surface moves however, this shading pattern will not move -
hence the optical flow iszero everywhere even though the motion field is not zero. In figure
4.26a, the opposite occurs. Here we have a fixed sphere with a moving light source. The
shading in theimagewill change asthe source moves. In this case the optical flow isnonzero
but the motion field is zero. If the only information accessible to usis the optical flow and
we depend on this, we will get false results.

o | s
rs o
|

Fig4.26 Motion of the sphere or the light source here demonstr ates that optical flow
is not always the same as the motion field.

Optical Flow

Let E (X, Y, t) betheimage irradiance at timet at the image point (x, y). If u (X, y) and v (X,
y) are the x and y components of the optical flow vector at that point, we need to search a
new image for apoint where theirradiance will bethe same at timet+ &, i.e.: at point (x+0x,
y+0dy), where dx = udt and ox = udt. i.e:

E(x+udty+vdt, t+&) = E(x, y, t) (4.39)

for asmall timeinterval, &t. From thissingle constraint u and v cannot be determined unique-
ly. We therefore use the fact that the optical flow field should be continuous almost every-
where. Hence if brightness varies smoothly with x, y and t we can expand the |eft hand side
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of equation 4.39 asa Taylor seriesto obtain:

E(x v, 0+ &G + 5+ 8% e = E(x v, 1) (4.40)

where e contains second and higher order termsin ox etc. In the limit as &t tends to zero we
obtain:

OEdx , OEdy , OE _
axdt+aydt+ 5 = 0 (4.41)
from which we can abbreviate:
_dx. o _dy
u=2' VT q (4.42)
and
_OE. . _0E _ _0E_
EX—aX,Ey—ay, B =5 =0 (4.43)
so that we obtain:
E.u+ Eyv+ E, =0 (4.44)

The derivatives E,, E, and E; are estimated from the image. Equation 4.44 is known as the
optical flow constraint equation.

It can be seen that equation 4.44 represents a straight line in velocity (u, v) space. Hence a
local measurement of the three derivatives E, ... etc. can only identify this line and not

unique values for u and v. We therefore introduce an additional constraint.

Smoothness of the Optical Flow

We now make the assumption that optical flow patterns are smooth. We can do this mathe-
matically by finding a measure of departure from smoothness:

e, = I I (u2 + vz)dxdy (4.45)

which isthe integral of the square of the magnitude of the gradient of the optical flow. We
also determine the error in the optical flow constraint equation (which in practice will not
quite be zero).

e = [ [ (Eu+Eyv+ E,)“dxdy (4.46)
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Both of these equations should be as small as possible so we want to minimize g5 + Ae,

where A is a parameter that weights the error in the image motion equation relative to the
departure from smoothness. A large parameter should be used if the brightness measure-
ments are accurate and small if they are noisy.

This problem them amounts to the calculus of variations, and the Euler equations yield:

O0%u = A(E,u+ Ev+ E)E, (4.47)
2
O0°v = AMEu+ Ev+ E:) E, (4.48)
where:
2 2
2= 2.2 (4.49)
X Oy

which isthe Laplacian operator.

Equation 4.47 and 4.48 form a pair of eliptical second order partia differential equations
which can be solved iteratively.

Discontinuities in Optical Flow

Where silhouettes (one object occluding another) occur, discontinuities in the optical flow
will occur. We should try to find these pointsto exclude them before the method above joins
them with a smooth solution.

Thisisdone by incorporating segmentation into the iterative solutions to equations 4.47 and
4.48 above. After each iteration welook for regionswheretheflow changesrapidly. At these
points, we inhibit the next iteration of the above equations from smoothly connecting the so-
lution across these points.

4.1.8.4  Color tracking sensors

Although depth from stereo will doubtless prove to be apopular application of vision-based
methods to mobile robotics, it mimics the functionality of existing sensors, including ultra-
sonic, laser and optical rangefinders. An important aspect of vision-based sensing isthat the
vision chip can provide sensing modalities and cues that no other mobile robot sensor pro-
vides. One such novel sensing modality is detecting and tracking color in the environment.

Color represents an environmental characteristic that is orthogonal to range, and it repre-
sents both a natural cue and an artificial cue that can provide new information to a mobile
robot. For example, the annual robot soccer events make extensive use of color both for en-
vironmental marking and for robot localization (see Fig. 4.27).

Color sensing has two important advantages. First, detection of color is a straightforward
function of asingleimage, therefore no correspondence problem need be solved in such al-
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Fig4.27 Color markers on the top of EPFL’s STeam Engine soccer robots enable a
color-tracking sensor to locate the robots and the ball in the soccer field.

gorithms. Second, because color sensing provides a new, independent environmental cue,
if it is combined (i.e. sensor fusion) with existing cues, such as data from stereo vision or
laser rangefinding we can expect significant information gains.

Efficient color tracking sensors are now availablecommercialy. Below, we briefly describe
two commercial, hardware-based color-tracking sensors aswell as a publicly avail able soft-
ware-based solution.

Cognachrome color tracking system

The Cognachrome Vision System is a color-tracking hardware-based sensor capable of ex-
tremely fast color tracking on a dedicated processor [109]. The system will detect color
blobs based on 3 user-defined colorsat arate of 60 Hz. The Cognhachrome system can detect
and report on a maximum of 25 objects per frame, providing centroid, bounding box, area,
aspect ratio and principal axis orientation information for each object independently.

This sensor uses a technique called constant thresholding to identify each color. In RGB
space, the user defines for each of R, G and B a minimum and maximum value. The three-
dimensional box defined by these six constraints forms a color bounding box, and any pixel
with RGB values that are al within this bounding box isidentified asatarget. Target pixels
are merged into larger objects that are then reported to the user.

The Cognachrome sensor achieves a position resolution of one pixel for the centroid of each
object in afield that is 200 x 250 pixelsin size. The key advantage of this sensor, just as
with laser rangefinding and ultrasonics, is that there is no load on the mobile robot’s main
processor due to the sensing modality. All processing is performed on sensor-specific hard-
ware (i.e. aMotorola 68332 processor and a mated framegrabber). The Cognachrome sys-
tem costs several thousand dollars, but is being superceded by higher-performance hardware
vision processors at Newton Labs, Inc.

CMUcam robotic vision sensor

Recent advances in chip manufacturing, both in terms of CM OS imaging sensors and high-
speed, readily available microprocessors at the 50+ MHz range, have made it possible to




4 Perception 125

Fig4.28 The CMUcam sensor consists of 3 chips: a CMOSimaging chip, a SX28 mi-
croprocessor and a Maxim RS232 level shifter. Roland, cmucam.jpg!

Fig4.29 Color-based object extraction as applied to a human hand. Roland,
cmucamhandl.jpg and cmucamhand?2.jpg

manufacture low-overhead intelligent vision sensors with functionality similar to Cognach-
rome for a fraction of the cost. The CMUcam sensor is a recent system that mates a low-
cost microprocessor with a consumer CMOS imaging chip to yield an intelligent, self-con-
tained vision sensor for $100, as shown in Figure 4.29.

This sensor is designed to provide high-level information extracted from the cameraimage
to an external processor that may, for example, control amobile robot. An external proces-
sor configures the sensor’ s streaming data mode, for instance specifying tracking mode for
abounded RGB or YUV value set. Then, the vision sensor processes the datain real time
and outputs high-level information to the external consumer. At less than 150 milliamps of
current draw, this sensor provides image color statistics and color tracking services at ap-
proximately 20 frames per second at a resolution of 80 x 143 [Roland, reference here new
reference in my text notes, Anthony Rowe et a.].

Figure 4.29 demonstrates the color-based object tracking service as provided by CMUcam
oncethe sensor istrained on ahuman hand. The approximate shape of the object is extracted
aswell asits bounding box and approxiamate Center of Mass.
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CMvVision color tracking software library

Because of the rapid speedup of processor in recent times, there has been a trend towards
executing basic vision processing on a main processor within the mobile robot. Intel Cor-
poration’s Computer Vision library is an optimized library for just such processing [106].
Inthisspirit, the CMVision color tracking software represents a state-of -the-art software so-
lution for color tracking in dynamic environments[97]. CMVision can track up to 32 colors
at 30 Hz on a standard 200 MHz pentium computer.

The basic algorithm this sensor uses is constant thresholding, as with Cognachrome, with
the chief difference that the YUV color space is used instead of the RGB color space when
defining a 6-constraint bounding box for each color. While R, G and B values encode the
intensity of each color, YUV separates the color (or chrominance) measure from the bright-
ness (or luminosity) measure. Y represents the image' s luminosity while U and V together
captureits chrominance. Thus, abounding box expressed in YUV space can achieve greater
stability with respect to changes in illumination than is possible in RGB space.

The CMVision color sensor achieves aresolution of 160 x 120 and returns, for each object
detected, abounding box and acentroid. The softwarefor CMVisionisavailablefreely with
aGnu Public License at [108].

K ey performance bottlenecks for both the CMVision software, the CMUcam hardware sys-
tem and the Cognachrome hardware system continue to be the quality of imaging chipsand
available computational speed. Assignificant advances are made on these frontiers one can
expect packaged vision systems to witness tremendous performance improvements.
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Fig4.30 A sample probability density function, showing a single probability peak
(i.e. unimodal) with asymptotic drops in both directions.

4.2 Representing Uncertainty

In Section (4.1.2) we presented aterminology for describing the performance characteristics
of asensor. Asmentioned there, sensors are imperfect devices with errors of both the sys-
tematic and random nature. Random errors, in particular, cannot be corrected, and so they
represent atomic levels of sensor uncertainty.

But when you build a mobile robot, you combine information from many sensors, even us-
ing the same sensors repeatedly, over time, to possibly build a model of the environment.
How can we scale up, from characterizing the uncertainty of asingle sensor to the uncertain-
ty of the resulting robot system?

We begin by presenting a statistical representation for the random error associated with an
individual sensor [12]. With a quantitative tool in hand, the standard Gaussian uncertainty
model can be presented and evaluated. Finally, we present a framework for computing the
uncertainty of conclusions drawn from a set of quantifiably uncertain measurements, known
astheerror propagation law.

4.2.1 Statistical representation

We have already defined error asthe difference between a sensor measurement and the true
value. From a tatistical point of view, we wish to characterize the error of a sensor, not for
one specific measurement but for any measurement. Let us formulate the problem of sens-

ing as an estimation problem. The sensor hastaken aset of n measurements with values p; .

The goal isto characterize the estimate of the true value E[ X] given these measurements:

E[X] = 9Py P2 - P) (4.50)

From this perspective, the true value is represented by a random (and therefore unknown)
variable X. We use aprobability density function to characterize the statistical properties of
the value of X.

In figure 4.30, the density function identifies, for each possible value x of X a probability
density f(x) along the y-axis. The area under the curve is 1, indicating the complete chance
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of X having some value:

[oe]

[ feodx =1 (4.51)

The probability of the value of X falling between two limits a and b is computed as the
bounded integral:

Pla<X] = [ bf(x)dx (4.52)

The probability density function isauseful way to characterize the possible values of X be-
cause it not only captures the range of X but also the comparative probability of different
valuesfor X. Using f(x) we can quantitatively define the mean, variance and standard devi-
ation asfollows.

Themean value [ is equivalent to the expected value E[ X] if we were to measure X anin-
finite number of times and average al of the resulting values. We can easily define E[X] :

u=E[X = I ) xf(x)dx (4.53)

Note in the above equation that calculation of E[ X] isidentical to the weighted average of
all possible values of x. In contrast, the mean square value is ssmply the weighted average
of the squares of all values of x:

[oe]

E[X]] = [ x*f(x)dx (4.54)

Characterization of the "width" of the possible values of X is a key statistical measure, and

thisrequiresfirst defining the variance o
Var(X) = o = [ (x— W) 2F(x) dx (4.55)

Finally, the standard deviation o is simply the square root of variance. o and o will play
important rolesin our characterization of the error of a single sensor as well as the error of
amodel generated by combining multiple sensor readings.

Independence of random variables

With the tools presented above, we will often evaluate systems with multiple random vari-
ables. For instance, amobile robot’ s laser rangefinder may be used to measure the position
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of afeature on the robot’s right and, later, another feature on the robot’s left. The position
of each feature in the real world may be treated as a random variable, X; and X, .

Two random variables X; and X, areindependent if the particular value of one has no bear-

ing on the particular value of the other. In this case we can draw several important conclu-
sions about the statistical behavior of X; and X, . First, the expected value (or mean value)

of the product of random variablesis equal to the product of their mean values:
E[X %] = E[X}]E[X}] (4.56)
Second, the variance of their sumsis equal to the sum of their variances:
Var (X, +X,) = Var(X,) +Var(X,) (4.57)

In mobile robotics, we will often assume the independence of random variables even when
this assumption is not strictly true. The simplification that results makes a number of the
existing mobile robot mapping and navigation algorithms tenable, as described in Chapter
5. A further simplification, described in the next sub-section, revolves around one specific
probability density function used more often than any other when modeling error: the Gaus-
sian distribution.

4.2.2 Gaussian distribution

The Gaussian distribution, also called the normal distribution isused across engineering dis-
ciplines when a well-behaved error model is required for a random variable for which no
error model of greater felicity has been discovered. The Gaussian has many characteristics
that make it mathematically advantageous to other ad hoc probability density functions. It
issymmetric around themean . Thereisno particular biasfor being larger than or smaller
than p, and this makes sense when there is no information to the contrary. The Gaussian

distributionisalso unimodal, with asingle peak that reachesamaximum at | (necessary for
any symmetric, unimodal distribution). Thisdistribution also has tails (the value of f(x) as
X approaches —o and ) that only approach 0 asymptotically. Thismeansthat all amounts
of error are possible, although very large errors may be highly improbable. In this sense, the
Gaussian is conservative. Finaly, as seen in the formulafor the Gaussian probability den-
sity function, the distribution depends only on two parameters.

O (x —1)4d
exp X
0 20 O

f(x) = (4.58)

1
0./2m
The Gaussian’ s basic shape is determined by the structure of this formula, and so the only

two parameters required to fully specify a particular Gaussian are its mean 1 and its stan-
dard deviation o. Figure 4.31 shows the Gaussian functionwithp = O ando = 1.
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Fig4.31 The Gaussian functionwith g = 0 and 0 = 1. Weshall refer to thisasthe
Reference Gaussian. The value 20 is often refereed for the signal quality.
95.44% of the values are falling within +20.

Suppose that a random variable X is modeled as a Gaussian. How does one identify the
chance that the value of X is within one standard deviation of p? In practice, thisrequires
integration of f(x), the Gaussian function to compute the area under a portion of the curve:

Area = I ° f(x)dx (4.59)

—0

Unfortunately, there is no closed-form solution for the integral in Equation (4.59), and so
the common technique isto use a Gaussian cumul ative probability table. Using such atable,
one can compute the probability for various value ranges of X:

P[u—o<Xsu+qg = 0.68

P[u—20<X<u+2q = 0.95

P[u—30<X<u+3qg = 0.997
For example, 95% of the values for X fall within two standard deviations of its mean. This
applies to any Gaussian distribution. As is clear from the above progression, under the

Gaussian assumption once bounds are relaxed to 30, the overwhel ming proportion of values
(and, therefore, probability) is subsumed.

4.2.3 Error propagation: combining uncertain measurements

The probability mechanisms above may be used to describe the errors associated with asin-
gle sensor’ s attempts to measure a real-world value. But in mobile robotics, one often uses
a series of measurements, all of them uncertain, to extract a single environmental measure.
For example, a series of uncertain measurements of single points can be fused to extract the
position of aline (e.g. ahallway wall) in the environment (fig. 4.36).

Consider the system in figure 4.32, where X; are n input signals with a known probability
distribution and Y; are moutputs. The question of interest is: what can we say about the prob-
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Fig4.32 Error propagation in a multiple-input multi-output systemwith n inputs and
m outputs.
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Fig4.33 One-dimensional case of a nonlinear error propagation problem

ability distribution of the output signals Y; if they depend with known functions f; upon the
input signals? Figure 4.33 depicts the one-dimensional version of this error propagation
problem as an example.

The general solution can be generated using thefirst order Taylor expansion of f;. The out-
put covariance matrix Cy is given by the error propagation law:

C, = F,C,Fy (4.60)
where
Cx: covariance matrix representing the input uncertainties
Cy: covariance matrix representing the propagated uncertainties for the outputs.

Fy is the Jacobian matrix defined as:

a h
o, X, "X,
Fy = 0f = @]X[Jﬂxyj =|: &55'”5Yj = . (4.61)
f Oy I
X, "X,
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Thisis aso the transpose of the gradient of f(X) .

We will not present a detailed derivation here (see Appendix A) but will use Equation 4.60
in order to solve an example problem in Section 4.3.1.1.
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4.3 Feature Extraction
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Fig4.34 The Perceptual Pipeline: From sensor readings to knowledge models

An autonomous mobile robot must be able to determine its relationship to the environment
by making measurements with its sensors and then using those measured signals. A wide
variety of sensing technologies are available, as shown in the previous section. But every
sensor we have presented isimperfect: measurements always have error and, therefore, un-
certainty associated with them. Therefore, sensor inputs must be used in away that enables
the robot to interact with its environment successfully in spite of measurement uncertainty.

There are two strategiesfor using uncertain sensor input to guide the robot’ s behavior. One
strategy is to use each sensor measurement as araw and individual value. Such raw sensor
values could for example betied directly to robot behavior, whereby the robot’s actions are
afunction of itssensor inputs. Alternatively, the raw sensorsvalues could be used to update
an intermediate model, with the robot’ s actions being triggered as a function of this model
rather than the individual sensor measurements.

The second strategy is to extract information from one or more sensor readings first, gener-
ating a higher-level percept that can then be used to inform the robot’s model and perhaps
the robot’ s actions directly. We call this process feature extraction, and it is this next, op-
tional step in the perceptual interpretation pipeline (Fig. 4.34) that we will now discuss.

In practical terms, mobile robots do not necessarily use feature extraction and scene inter-
pretationfor every activity. Instead, robotswill interpret sensorsto varying degrees depend-
ing on each specific functionality. For example, in order to guarantee emergency stopsin
the face of immediate obstacles, the robot may make direct use of raw forward-facing range
readings to stop its drive motors. For local obstacle avoidance, raw ranging sensor strikes
may be combined in an occupancy grid model, enabling smooth avoidance of obstacles
meters away. For map-building and precise navigation, the range sensor values and even
vision sensor measurements may pass through the complete perceptual pipeline, being sub-
jected to feature extraction followed by scene interpretation to minimize the impact of indi-
vidual sensor uncertainty on the robustness of the robot’ s map-making and navigation skills.
The pattern that thus emergesis that, as one moves into more sophisticated, long-term per-
ceptual tasks, the feature extraction and scene interpretation aspects of the perceptual pipe-
line become essential.

Feature: Definition

Features are recognizable structures of elements in the environment. They usually can be
extracted from measurements and mathematically described. Good features are always per-
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ceivable and easily detectable from the environment. We distinguish between low-level fea-
tures (geometric primitives) like lines, circles or polygons and high-level features (objects)
such as edges, doors, tables or atrash can. At one extreme, raw sensor data providesalarge
volume of data, but with low distinctiveness of each individual quantum of data. Making use
of raw data has the potential advantage that every bit of information is fully used, and thus
thereisahigh conservation of information. Low level features are abstractions of raw data,
and as such provide alower volume of data while increasing the distinctiveness of each fea-
ture. The hope, when one incorporates low level features, is that the features are filtering
out poor or useless data, but of courseit is also likely that some valid information will be
lost as aresult of the feature extraction process. High level features provide maximum ab-
straction from the raw data, thereby reducing the volume of data as much as possible while
providing highly distinctive resulting features. Once again, the abstraction process has the
risk of filtering away important information, potentially lowering data utilization.

Although features must have some spatial locality, their geometric extent can range widely.
For example, a corner feature inhabits a specific coordinate |ocation in the geometric world.
In contract, avisual "fingerprint" identifying a specific room in an office building appliesto
the entire room, but has alocation that is spatialy limited to the one, particular room.

In mobilerobotics, features play an especially important role in the creation of environmen-
tal models. They enable more compact and robust descriptions of the environment, helping
amobile robot during both map-building and localization. When designing a mobile robot,
acritical decision revolves around choosing the appropriate features for the robot to use. A
number of factors are essential to this decision:

Target environment. For geometric features to be useful, the target geometries must be
readily detected in the actual environment. For example, line features are extremely useful
in office building environments due to the abundance of straight walls segments while the
same feature is virtually useless when navigating Mars.

Available sensors. Obviously the specific sensors and sensor uncertainty of the robot im-
pactsthe appropriateness of variousfeatures. Armed with alaser rangefinder, arobot iswell
qualified to use geometrically detailed features such as corner features due to the high qual-
ity angular and depth resolution of the laser scanner. In contrast, a sonar-equipped robot
may not have the appropriate tools for corner feature extraction.

Computational power. Vision-based feature extraction can effect a significant computa-
tional cost, particularly in robots where the vision sensor processing is performed by one of
the robot’s main processors.

Environment representation. Feature extraction is an important step toward scene inter-
pretation, and by thistoken thefeatures extracted must provide information that is consonant
with the representation used for the environment model. For example, non-geometric vi-
sion-based features are of little value in purely geometric environment models but can be of
great value in topological models of the environment. Figure 4.35 shows the application of
two different representations to the task of modeling an office building hallway. Each ap-
proach has advantages and disadvantages, but extraction of line and corner features has
much more relevance to the representation on the left. Refer to Chapter 5, Section 5.5 for a
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Fig4.35 Environment representation and modeling:

a) feature based (continuos metric); b) occupancy grid (discrete metric);

close look at map representations and their relative tradeoffs.

In thefollowing two sections, we present specific feature extraction techniques based on the
two most popular sensing modalitites of mobile robotics: range sensing and visual appear-
ance-based sensing.

4.3.1 Feature extraction based on range data (laser, ultrasonic, vi-
sion-based ranging)

Most of today’s features extracted from ranging sensors are geometric primitives such as
line segmentsor circles. The main reason for thisisthat for most other geometric primitives
the parametric description of the features becomes too complex and no closed form solution
exists. Here we will describe line extraction in detail, demonstrating how the uncertainty
models presented above can be applied to the problem of combining multiple sensor mea-
surements. Afterwards, we briefly present another very successful feature for indoor mobile
robots, the corner feature, and demonstrate how these features can be combined in asingle
representation.

43.1.1 Line Extraction

Geometric feature extraction is usualy the process of comparing and matching measured
sensor data against a predefined description, or template, of the expect feature. Usually, the
system isoverdetermined in that the number of sensor measurements exceeds the number of
feature parameters to be estimated. Since the sensor measurements al have some error,
there is no perfectly consistent solution and, instead, the problem is one of optimization.
One can, for example, extract the feature that minimizes the discrepancy with all sensor
measurements used (e.g. least squares estimation).

In this section we present an optimization-based solution to the problem of extracting aline
feature from a set of uncertain sensor measurements. For greater detail than is presented be-
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Fig 4.36 Estimating a line in the least squares
sense. The model parametersr (length of
the perpendicular) and a (itsangleto the
abscissa) uniquely describe a line.

low, refer to [19], pp. 15 and 221.

Probabilistic line extraction from uncertain range sensor data

Our goal isto extract alinefeature based on aset of sensor measurements as shown in Figure
4.36. Thereisuncertainty associated with each of the noisy range sensor measurements, and
so there is no single line that passes through the set. Instead, we wish to select the best pos-
sible match, given some optimization criterion.

More formally, suppose n ranging measurement points in polar coordinates x, = (p;, 6,)

are produced by the robot’ s sensors. We know that there is uncertainty associated with each
measurement, and so we can model each measurement using two random variables

X, = (P;, Q). Inthisanalysiswe assume that uncertainty with respect to the actual value
of P and Q areindependent. Based on Equation (4.56) we can state this formally:

E[P, 0P =E[P,]E[P|] Oi,j=1 .,n (4.62)
E[Q 0Q) =E[QIE[Q]  DTij=1 ., n (463)
E[P,0Q = E[P,]E[Q] Oi,j=1, .., n (4.64)

Furthermore, we will assume that each random variable is subject to a Gaussian probability
density curve, with amean at the true value and with some specified variance:

P, ~ N(p;, &) (4.65)
2
Q ~ N(8;, o) (4.66)
Given some measurement point (p, 6), we can calculate the corresponding Euclidean co-

ordinatesas x = pcosB andy = psinB. If there were no error, we would want to find a
line for which all measurementslie on that line:
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pcosBcosa + psinBsina—r = pcos(B—a)—r = 0 (4.67)

Of course there is measurement error, and so this quantity will not be zero. When it is non-
zero, thisisameasure of the error between the measurement point (p, 8) andtheline, spe-
cifically in terms of the minimum orthogonal distance between the point and theline. Itis
always important to understand how the error that shall be minimized is being measured.
For example a number of line extraction techniques do not minimize this orthogonal point-
line distance, but instead the distance parallél to the y-axis between the point and the line.
A good illustration of the variety of optimization criteriais available in [18] where several
algorithms for fitting circles and ellipses are presented which minimize algebraic and geo-
metric distances.

For each specific (p;, 6;), we can write the orthogonal distance d; between (p;, 6,) and
thelineas:

p;cos(8;,—a)—r = d;. (4.68)

If we consider each measurement to be equally uncertain, we can sum the square of all errors
together, for all measurement points, to quantify an overall fit between the line and al of the
measurements:

S= Zdiz = Zpicos(ei—u)—r)2 (4.69)

Our goa isto minimize Swhen selecting the line parameters (o, r). We can do so by solv-
ing the nonlinear equation system

0S _ 0S _
=0 =0 (4.70)

The above formalismisconsidered an unweighted least squar es sol ution because no distinc-
tion is made from among the measurements. In reality, each sensor measurement may have
its own, unique uncertainty based on the geometry of the robot and environment when the
measurement was recorded. For example, we know with regards to vision-based stereo
ranging that uncertainty and, therefore, variance increases as a square of the distance be-

tween the robot and the object. To make use of the variance 0;2 that models the uncertainty
regarding distance p; of aparticular sensor measurement, we compute an individual weight
w; for each measurement using the formula:

w =1/ &L (4.71)

Then, equation (4.69) becomes
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S= Swd” = Swi(p;cos(8; —a)-r)”. (4.72)

It can be shown that the solution of (4.70) in the weighted least square sense? is:

2. 2 .
EZwipi sin26, —Z—szZwiwjpipj cos6; sing; %
a = Jatan=— - 0 (473
E’Zwipi c0S26; — == SIW;w;p,p; cos(8; + ej)%

0. 0. —
. Zw,plcos( —a)
P

In practice equation (4.73) uses the four-quadrant arc tangent (atan2)3.

(4.74)

L et us demonstrate Equations (4.73) and (4.74) with a concrete example. The 10 measure-
ments (p;, 6;) in table 4.1 have been taken with alaser range sensor installed on a mobile

robot. We assume that the uncertainties of all measurements are equal, uncorrelated and that

Theissue of determining an adequate weight when ¢, isgiven (and perhaps some additional information) iscom-
plex in genera and beyond the scope of this text. See [20] for a careful treatment.

We follow here the notation of [19] and distinguish aweighted least squares problem if Cy isdiagonal (input
errors are mutually independent) and a generalized least squares problem if Cy is non-diagonal.

3 Atan2 computes an(x/ y)_lbut uses the signs of both x and y to determine the quadrant in with
the resulting angles lies. For example tan2(-2, —2) = -135°, whereas tan2(2, 2) = -45°, adis-
tinction which would be lost with a single-argument arc tangent function.
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Fig4.37 Extracted line from laser
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the robot was static during the measurement process.

Table 4.1;: Measured values

ointing angle of
" s 6 range p,
(deg] m)
0 0.5197
5 0.4404
10 0.4850
15 0.4222
20 0.4132
25 0.4371
30 0.3912
35 0.3949
40 0.3919
45 0.4276
50 0.4075
55 0.3956
60 0.4053
65 0.4752
70 0.5032
75 0.5273
80 0.4879

Direct application of the above solution equationsyieldstheline defined by a = 37.36 and

r = 0.4. Thisline represents the best fit in aleast square sense and is shown visually in
Fig. 4.37.

Propagation of uncertainty during line extraction

Returning to the subject of Section (4.2.3), we would like understand how the uncertainties
of specific range sensor measurements propagate to govern the uncertainty of the extracted
line. In other words, how does uncertainty in p; and 8; propagate in Equations (4.73) and

(4.74) to affect the uncertainty of a andr?
Thisrequires direct application of Equation 4.60 with A and R representing the random out-
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putsvariables of aand r respectively. Thegoal isto derivethe 2 x 2 output covariance ma-
trix

2
O, O
Cag = | A AR, (4.75)

2
Oar ORr

giventhe 2n x 2n input covariance matrix

C, = |CP 0] _ |daa(;) O (4.76)
0 Co 0 diag(G‘;i)

and the system relationships (4.73) and (4.74). Then by calculating the Jacobian:

do oda Jda da Oa oda

P, 9P, 9P, 30, 90,
Fpg=1| * 2 " Qu0Q 9Q, 4.77)

o or o or or or
0P, 0P, 0P, 0Q, 0Q, 0Q,

we can instantiate the uncertainty propagation equation (4.63) to yield C,g:

-
Car = FpoCxFpa (4.78)

Thus we have calculated the probability C,, of the extracted line (a, r) based on the prob-
abilities of the measurement points. For more details about this method refer to Appendix A

4.3.1.2 Segmentation for Line Extraction

The previous section has described how to extract aline feature given a set of range mea-
surements. Unfortunately, the feature extraction processis significantly more complex than
this. A mobile robot does indeed acquire a set of range measurements, but in general the
range measurements are not all part of one line. Rather, only some of the range measure-
ments should play arolein line extraction and, further, there may be more than oneline fea-
ture represented in the measurement set. This more realistic scenario is shown in Figure
4.38.

The process of dividing up a set of measurements into subsets that can be interpreted one-
by-one is termed segmentation and is an important aspect of both range-based and vision-
based perception. A diverse set of techniques exist for segmentation of sensor input in gen-
eral. Thisgeneral problem isbeyond the scope of thistext and, for details concerning seg-




4 Perception 141

b) Model Space

By=r [mi}

A set of n; neighboring points
of the image space

Bo=a [rad]

Evidence accumulation in the model space
—Clusters of normally distributed vectors

I I
1 1

Fig4.38 Clustering: Finding neighboring segments of a common line

mentation algorithms, refer to [Roland, reference here Koperski et al. and Shi et al. and I've
put the references for in my text file for you].

For example, one segmentation technique is the merging, or bottom-up technique in which
smaller features are identified and then merged together based on decision criteriato extract
the goal features. Suppose that the problem of Fig. (4.38) is solved through merging. First,
one may generate a large number of line segments based on adjacent groups of range mea-
surements. The second step would be to identify line segments that have a high probability
of belonging to the same extracted light feature. The simplest measure of the closeness of

two line segments® x,= [a1,r4] and x,= [0, 5] in the model spaceis given by Euclidean dis-
tance:

(X =%,) (X —Xp) = (0, —0,)° + (ry—1,)° (4.79)

The selection of al line segments x; that contribute to the same line can now be done in a
threshold-based manner according to:

(% —%)" (% —%) <, (4.80)

whered,,isathreshold valueand x isthe representation of the referenceline (from amodel,
average of agroup of lines, etc.).
But the approach of Equation (4.80) does not take into account the fact that, for each mea-
surement and therefore for each line segment we have a measure of uncertainty. One can
improve upon this equation by selecting line segments that are weighted by their covariance
matrix C::

j

4 Note: Thelinesare represented in polar coordinates.
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Fig4.39 Clustering: Finding neighboring segments of a common line (Weil3 et al
1994 [110])

(% =%)"(C;+C) " (x —%) <, (4.81)

The distance measure of Equation (4.81) discriminates the distance of uncertain points in
model space considerably more effectively by taking uncertainty into account explicitly.

4.3.1.3 Range histogram features

A Histogram isasimple way to combine characteristics elements of animage. An angle his-
togram as presented in figure 4.39 plotsthe statistics of linesextracted by two adjacent range
measurements. First, a 360 degree scan of the room is taken with the range scanner, and the
resulting “hits’ are recorded in a map. Then the algorithm measures the relative angle be-
tween any two adjacent hits (see Figure 4.39). After compensating for noise in the readings
(caused by the inaccuracies in position between adjacent hits), the angle histogram shown
in Figure 4.39a bottom can be built. The uniform direction of the main walls are clearly vis-
ible as peaksin the angle histogram. Detection of peaksyields only two main peaks: one for
each pair of parallel walls. Thisalgorithmisvery robust with regard to openingsin thewalls,
such as doors and windows, or even cabinets lining the walls.

4.3.1.4  Extracting other geometric features

Linefeatures are of particular valuefor mobile robots operating in man-made environments,
wherefor example building wallsand hallway wallsare usually straight. 1ngeneral amobile
robot makes use of multiple features simultaneously, comprising a feature set that is most
appropriate for its operating environment. For indoor mobile robots, the line featureis cer-
tainly amember of the optimal feature set.

In addition, other geometric kernels consistently appear throughout the indoor man-made
environment: Corners features, defined as a point feature with an orientation; step discon-
tinuities, defined as a step change perpendicular to the direction of hallway travel, are char-
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Fig 4.40 Multiple geometric features in a single hallway, including doorways and

discontinuities in the width of the hallway.

acterized by their form (convex or concave) and step size; doorways, defined as openings of
the appropriate dimensions in walls, are characterized by their width.

Thus, the standard segmentation problem is not so simple as deciding on a mapping from
sensor readingsto line segments, but rather it isaprocessin which features of different types
are extracted based on the available sensor measurements. Figure 4.40 shows amodel of an
indoor hallway environment along with both indentation features (i.e. step discontinuities)
and doorways.

Note that different feature types can provide quantitatively different information for mobile
robot localization. Thelinefeature, for example, providestwo degreesof information, angle
and distance. But the step feature providestwo dimensional relative position information as
well asangle.

The set of useful geometric features is essentially unbounded, and as sensor performance
improves we can only expect greater success at the feature extraction level. For example,
an interesting improvement upon the line feature described above relates to the advent of
successful vision-based ranging systems. Because stereo vision providesafull three dimen-
sional set of range measurements, one can extract plane features in addition to line features
from the resulting data set. Plane features are valuable in man-made environments due to
the flat walls, floors and ceilings of our indoor environments. Thus they are promising as
another highly informative feature for mobile robots to use for mapping and localization.

4.3.2 Visual appearance-based feature extraction

Visual interpretation is, as we have mentioned before, an extremely challenging problemin
thelarge. Significant research effort has been dedicated to inventing algorithms for under-
standing a scene based on 2D images over the past several decades, and the research efforts
have dowly produced fruitful results. Covering thefield of computer vision and image pro-
cessing is of course beyond the scope of thiswork. To explore this discipline, refer to [22,
26, 107]

In Section 4.1.8 we have already seen vision-based ranging and color tracking sensors that
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are commercially available for mobile robots. These specific vision applications have wit-
nessed commercial solutions primarily because the challenges are in both cases relatively
well-focused and the resulting, problem-specific agorithms are straightforward. But imag-
es contain much more than implicit depth information and color blobs. We would like to
solve the more genera problem of extracting alarge number of feature types from images.

This section presents some appearance-based feature extraction techniques that are relevant
to mobile robotics along these lines. Two key requirements must be met for a vision-based
feature extraction technigque to have mobile robotic relevance. First, the method must oper-
atein real time. Mobile robots move through their environment, and so the processing sm-
ply cannot be an off-line operation. Second, the method must be robust to the real-world
conditions outside of a laboratory. This means that carefully controlled illumination as-
sumptions and carefully painted objects are unacceptabl e requirements.

Throughout the following descriptions, keep in mind that vision-based interpretation is pri-
marily about the challenge of reducing information. A sonar unit produces perhaps 50 bits
of information per second. By contrast, a CCD camera can output 240 million bits per sec-
ond! The sonar produces atiny amount of information from which we hope to draw broader
conclusions. But the CCD chip produces too much information, and this overabundance of
information mixes together relevant and irrelevant information haphazardly. For example,
we may intend to measure the color of alandmark. The CCD cameradoes not simply report
its color, but al'so measures the general illumination of the environment, the direction of il-
lumination, the defocusing caused by optics, the side effectsimposed by nearby objectswith
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different colors, etc. Therefore the problem of visual feature extraction islargely one of re-
moving the majority of irrelevant information in an image so that the remaining information
unambiguously describes specific features in the environment.

We divide vision-based feature extraction methods into two classes based on their spatial
extent. Spatially localized features are those features found in sub-regions of one or more
images, corresponding to specific locationsin the physical world. Wholeimage features are
those features that are functions of the entireimage or set of images, corresponding to alarge
visually connected areain the physical world.

Before continuing it is important to note that all vision-based sensors supply images with
such a significant amount of noise that afirst step usually consists of "cleaning" the image
before launching any feature extraction algorithm. Therefore, we first describe the process
of initial image filtering, or pre-processing.

Image Pre-Processing

Many image processing algorithms make use of the second derivative of theimageintensity.
Indeed, the Laplacian of Gaussian method we studied in Section 4.1.8.2 for stereo ranging
is such an example. Because of the susceptibility of such high-order derivative agorithms
to changes in illumination in the basic signdl, it is important to smooth the signal so that
changes in intensity are due to real changes in the luminosity of objects in the scene rather
than random variations due to imaging noise. A standard approach is convolution with a
Gaussian distribution function, as we described earlier in Section 4.1.8.2:

| =GOl (4.82)

Of course, when approximated by a discrete kernel, such asa 3 x 3 table, theresult is essen-
tially local, weighted averaging:

[|121
G=15242 (4.83)
121

Such alow pass filter effectively removes high-frequency noise, and thisin turn causes the
first derivative and especially the second derivative of intensity to be far more stable. Be-
cause of the important of gradients and derivatives to image processing, such Gaussian
smoothing pre-processing is a popular first step of virtually all computer vision algorithms.

4.3.2.1  Spatially localized features

In the computer vision community many algorithms assume that the object of interest occu-
pies only a sub-region of the image, and therefore the features being sought are localized
spatially within images of the scene. Local image processing techniques find features that
are local to asubset of pixels, and such local features map to specific locations in the phys-
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a b
Fig 4.42 (@) Photo of aceiling lamp. (b) Edges computed from (a)

ical world. This makesthem particularly applicable to geometric models of the robot’ s en-
vironment.

The single most popular local feature extractor used by the mobile robotics community is
the edge detector, and so we begin with a discussion of this classical topic in computer vi-
sion. However, mobile robots face the specific mobility challenges of obstacle avoidance
and localization. In view of obstacle avoidance, we present vision-based extraction of the
floor plane, enabling arobot to detect all areasthat can be safely traversed. Finaly, inview
of the need for localization we discuss the role of vision-based feature extraction in the de-
tection of robot navigation landmarks.

Edge Detection

Figure 4.42 shows an image of a scene containing a part of aceiling lamp aswell asthe edg-
es extracted from this image. Edges define regions in the image plane where a significant
change in the image brightness takes place. As shown in this example, edge detection sig-
nificantly reduces the amount of information in an image, and istherefore a useful potential
feature during image interpretation. The hypothesis is that edge contours in an image cor-
respond to important scene contours. As the Figure 4.42(b) shows, thisis not entirely true.
Thereis adifference between the output of an edge detector and an ideal line drawing. Typ-
ically, there are missing contours, as well as noise contours that do not correspond to any-
thing of significance in the scene.

The basic challenge of edge detection is visualized in Figure 4.23. Figure 4.23(top |eft)
shows the 1-D section of an ideal edge. But the signal produced by a camerawill look more
like figure 4.23(top right). The location of the edge is still at the same x value, but a signif-
icant level of high-frequency noise affects the signal quality.

A naive edge detector would smply differentiate, since an edge by definition is located
where there arelarge transitionsin intensity. As shown in figure 4.23(bottom right), differ-
entiation of the noisy camerasignal resultsin subsidiary peaksthat can make edge detection
very challenging. A far more stable derivative signal can be generated ssimply by pre-pro-
cessing the camera signal using the Gaussian smoothing function described above. Below,
we present several popular edge detection algorithms, all of which operate on this same ba-
sic principle, that the derivative(s) of intensity, following someform of smoothing, comprise
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the basic signal from which to extract edge features.

Optimal Edge Detection: Canny

The current reference edge detector throughout the vision community was invented by John
Canny in 1983 [16]. This edge detector was born out of aformal approach in which Canny
treated edge detection asasignal processing problem inwhich there are three explicit goals:

1. Maximize the signal-to-noise ratio
2. Achieve the highest precision possible on the |ocation of edges
3. Minimize the number of edge responses associated with each edge

The Canny edge extractor smooths the image | via Gaussian convol ution and then looks for
maximain the (rectified) derivative. In practice the smoothing and differentiation are com-
bined into one operation because:

Goly =a6nol (4.84)

Thus, smoothing the image by convolving with a Gaussian G and then differentiating is
equivalent to convolving the image with G’ ; the first derivative of a Gaussian (Figure
4.43(b)).

We wish to detect edgesin any direction. Since G' isdirectional, this requires application
of two perpendicular filters, just aswe did for the Laplacian in Equation (4.35). We define
the two filtersasfy(X,y) = G SX)G4y) and fy(Xy) = G £Y)G4X). Theresultisabasic al-
gorithm for detecting edges at arbitrary orientations:

The algorithm for detecting edge pixels at an arbitrary orientation is:

1. Convolve the image 1 (X, y) with fy,(x, y) and f,(X, y) to obtain the gradient compo-
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Fig 4.45 (a) Edge image of the Figure 1.2(b); (b) Non-maxima suppression of (a)
nents Ry(X, y) and Ry (X, y), respectively.

2. Define the square of the gradient magnitude R(x, y) = RA/(x, y) + R2y(X, Y).
3. Mark those peaksin R(x, y) that are above some predefined threshold T.

Once edge pixels are extracted, the next step isto construct complete edges. A popular next
step in this process is non-maxima suppression. Using edge direction information, the pro-
cess involves revigiting the gradient value and determining whether or not it is at a local
maximum. If not, thenthevalueis set to zero. Thiscauses only the maximato be preserved,
and thus reduce the thickness of all edgesto asingle pixel (Figure 4.45).

Finally, we are ready to go from edge pixelsto complete edges. First, find adjacent (or con-
nected) sets of edges and group them into ordered lists. Second, use thresholding to elimi-
nate the weakest edges.

Gradient Edge Detectors

On amobile robot, computation time must be minimized to retain the real-time behavior of
the robot. Therefore simpler, discrete kernel operators are commonly used to approximate
the behavior of the Canny edge detector. One such early operators was developed by Rob-
ertsin 1965 [22]. He used two 2 x 2 masks to calculate the gradient across the edge in two
diagonal directions. Let r, bethevalue calculated from the first mask and r, from the second

mask. Roberts obtained the gradient magnitude |G| with the equation
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Fig 4.46 Example of vision based feature extraction with the different processing
steps:
a raw image data
b: filtered image using a Sobel filter
c: thresholding, selection of edge pixels
d: non-maxima suppression

-10 0-1
|G| O 1242 ;or, = N (4.85)
2t lod P 1o

Prewitt (1970) [22] used two 3 x 3 masks oriented in the row and column directions. Let p;
be the value cal culated from the first mask and p, the val ue cal cul ated from the second mask.
Prewitt obtained the gradient magnitude |G| and the gradient direction & taken in a clock-
wise angle with respect to the column axis shown in the following equation.

Gl O, /P2 +p2 ;

Py 1-1-1 101
GDatanEbZD: PL=10 0 0|; Po=|-101 (4.86)
11 1 101

In the same year Sobel [22] used, like Prewitt, two 3 x 3 masks oriented in the row and col-
umn direction. Let s; be the value calculated from the first mask and s, the value cal cul ated

from the second mask, he obtained the same results as Prewitt for the gradient magnitude
|G| and the gradient direction @taken in a clockwise angle with respect to the column axis.
Figure 4.46 shows application of the Sobel filter to a visual scene.
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Fig 4.47 (a) Number of pixelswith a specific gradient magnitude in theimage of Fig-
ure 1.2(b). (b) Same as (a), but with logarithmic scale
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Dynamic Thresholding

Many image processing algorithms have generally been tested in laboratory conditions or
using static image databases. Mobile robots, however, operate in dynamic real-world set-
tings where there is no guarantee regarding optimal or even stable illumination. A vision
system for mobile robots has to adapt to the changing illumination. Therefore a constant
threshold level for edge detection is not suitable. The same scene with different illumination
will resultsin edge images with considerable differences. To dynamically adapt the edge de-
tector to the ambient light, amore adaptive threshold is required, and one approach involves
calculating that threshold based on a statistical analysis of the image about to be processed.

To do this, ahistogram of the gradient magnitudes of the processed imageis calculated (fig-
ure4.47). With thissimplehistogram it iseasy to consider only the n pixelswith the highest
gradient magnitude for further calculation steps. The pixels are counted backward starting
at the highest magnitude. The gradient magnitude of the point where n is reached will be
used as the temporary threshold value.

The motivation for this technique is that the n pixels with the highest gradient are expected
to be the most rel evant ones for the processed image. Furthermore, for each image, the same
number of relevant edge pixelsis considered, independent of illumination. It isimportant to
pay attention to the fact that the number of pixelsin the edge image delivered by the edge
detector is not n. Because most detector uses non-maxima suppression, the number of edge
pixelswill be further reduced.
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Straight edge extraction: Hough transforms

I'n mobile robotics the straight edge is often extracted as a specific feature. Straight vertical
edges, for example, can be used as clues to the location of doorways and hallway intersec-
tions. The Hough Transform is a simple tool for extracting edges of a particular shape[ 15,
26]. Here we explain its application to the problem of extracting straight edges.

Suppose a pixel (xp, yp) inthelmagel is part of an edge. Any straight line edge including
point (x,, Y,) must satisfy the equation: y, = myx, + b, . This equation can only be sat-
isfied with aconstrained set of possible valuesfor m; and b, . In other words, this equation

is satisfied only by lines through | that pass through (X, Y,) -

Now consider asecond pixel, (xq, yq) inl. Any line passing through this second pixel must
satisfy the equation: y, = myXx,+b,. Whatif m; = m, and b, = b,? Thentheline de-
fined by both equationsis one and the same: it is the line that passes through both (X, y,,)
and (X5 Yg) -

More generally, for all pixelsthat are part of asingle straight linethrough I, they must all lie
on aline defined by the same values for mand b. The general definition of thislineis, of
course, y=mx + b. The Hough Transform usesthis basic property, creating amechanism so
that each edge pixel can "vote" for various values of the (m,b) parameters. The lines with
the most votes at the end are straight edge features:

1. Create atwo-dimensional array A with axes that tessellate the values of mand b
2. Initialize the array to zero: A[m, b] = O for al values of m,b
3. For each edge pixel (xp, yp) inl, loop over al values of mand b:

if y, = mx, +b then Alm, b] +=1

4. Searchthe cellsin Ato identify those with the largest value. Each such cell’ sindices
(m,b) corresponds to an extracted straight line edgein 1.

Floor Plane Extraction

Obstacle avoidance is one of the basic tasks required of most mobile robots. Range-based
sensors provide effective means for identifying most types of obstacles facing a mobile ro-
bot. Infact, becausethey directly measure rangeto objectsin the world, range-based sensors
such as ultrasonic and laser rangefinders are inherently well-suited for the task of obstacle
detection. However, each ranging sensor haslimitations. Ultrasonics have poor angular res-
olution and suffer from coherent reflection at shallow angles. Most laser rangefinders are
2D, only detect obstacles penetrating a specific sensed plane. Stereo vision and depth from
focusrequire the obstacles and floor plane to have texture in order to enable correspondence
and blurring respectively.

In addition to each individual shortcoming, range-based obstacle detection systems will
have difficulty detecting small or flat objectsthat are on the ground. For example, avacuum
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cleaner may need to avoid large, flat objects, such as paper or money left on the floor. In
addition, different typesof floor surfaces cannot easily be discriminated by ranging. For ex-
ample, asidewalk-following robot will have difficulty discriminating grass from pavement
using range sensing alone.

Floor plane extraction is avision-based approach for identifying the traversabl e portions of
the ground. Because it makes use of edges and color in avariety of implementations, such
obstacle detection systems can easily detect obstaclesin casesthat are difficult for tradition-
al ranging devices.

As isthe case with all vision-based agorithms, floor plane extraction succeeds only in en-
vironments that satisfy several important assumptions:

1. Obstacles differ in appearance from the ground.
2. Theground isflat and its angle to the camerais known.
3. There are no overhanging obstacles.

Thefirst assumption isarequirement in order to discriminate the ground from obstacles us-
ing its appearance. The second and third assumptions allow floor plane extraction algo-
rithms to estimate the robot’ s distance to obstacles detected.

Floor plane extraction in artificial environments

In acontrolled environment, the floor, walls and obstacles can be designed so that the walls
and obstacle appear significantly differently than the floor in a cameraimage. Shakey, the
first autonomous robot developed from 1966 through 1972 at SRI, used vision-based floor
plane extraction in a manufactured environment for obstacle detection [104]. Shakey’s ar-
tificial environment used textureless, homogeneously white floor tiles. Furthermore, the
base of each wall was painted with a high-contrast strip of black paint and the edges of all
simple polygonal obstacles were also painted black.

In Shakey’s environment, edges corresponded to non-floor objects, and so the floor plane
extraction algorithm simply consisted of the application of an edge detector to the mono-
chrome cameraimage. The lowest edges detected in an image corresponded to the closest
obstacles, and the direction of straight line edges extracted from the image provided clues
regarding not only the position but also the orientation of walls and polygonal obstacles.

Although this very simple appearance-based obstacle detection system was successful, it
should be noted that special care had to be taken at the timein order to create indirect light-
ing in the laboratory such that shadows were not cast, as the system would falsely interpret
the edges of shadows as obstacles.

Adaptive floor plane extraction

Floor plane extraction has succeeded, not only in artificial environments, but in real-world
mobile robot demonstrations in which arobot avoids both static obstacles such aswalls and
dynamic obstacles such as passers-by based on segmentation of the floor plane at arate of
several Hz. Such floor plane extraction algorithms tend to use edge detection and color de-
tection jointly while making certain assumptions regarding the floor, for example thefloor’s
maximum texture or approximate color range [98]
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Fig4.48 Examples of adaptive floor plane extraction. The trapezoidal polygon iden-
tifies the floor sampling region.

Each system based on fixed assumptions regarding the floor’ s appearanceis limited to only
those environments satisfying its constraints. A more recent approach is that of adaptive
floor plane extraction, whereby the parameters defining the expected appearance of thefloor
areallowed to vary over time. Inthe simplest instance, one can assume that the pixels at the
bottom of the image (i.e. closest to the robot) are part of the floor and contain no obstacles.
Then, statistics computed on these "floor sample” pixels can be used to classify the remain-
ing image pixels.

The key challenge in adaptive systemsis the choice of what statistics to compute using the
"floor sample" pixels. The most popular solution is to construct one or more histograms
based on the floor sample pixel values. In Edge Detection above, we found histograms to
be useful in determining the best cut point in edge detection thresholding algorithms. His-
tograms are al so useful as discrete representations of distributions. Unlike the Gaussian rep-
resentation, a histogram can capture multi-modal distributions. Histograms can also be
updated very quickly and use very little processor memory. An intensity histogram of the
"floor sample" subregion |; of imagel is constructed as follows:

1. As pre-processing, smooth | using a Gaussian smoothing operator
2. Initialize a histogram array H with nintensity values: H[i] = O fori = 1, .., n
3. For every pixel (x,y) in I, increment the histogram: H[I:(x, y)] +=1

The histogram array H serves as a characterization of the appearance of the floor plane. Of-
ten, several 1D histograms are constructed, corresponding to intensity, hue and saturation
for example. Classification of each pixel in| asfloor plane or obstacleis performed by |ook-
ing at the appropriate histogram counts for the qualities of the target pixel. For example, if
the target pixel has a hue that never occurred in the "floor sample,” then the corresponding
hue histogram will have a count of zero. When a pixel references a histogram value below
apre-defined threshold, that pixel is classified as an obstacle.

Figure 4.48 shows an appearance-based floor plane extraction algorithm operating on both
indoor and outdoor images [99]. Note that, unlike the static floor extraction algorithm, the
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adaptive algorithm is able to successfully classify a human shadow due to the adaptive his-
togram representation. An interesting extension of the work has been to not use the static
floor sample assumption, but rather to record visual history and to use, as the floor sample,
only the portion of prior visual images that has successfully rolled under the robot during
mobile robot mation.

Appearance-based extraction of the floor plane have been demonstrated on both indoor and
outdoor robots for real-time obstacle avoidance with a bandwidth of up to 10 Hz. Applica-
tions include robotics lawn mowing, social indoor robots and automated electric wheel-
chairs.

4.3.2.2 Whole-Image Features

A single visual image provides so much information regarding a robot’s immediate sur-
roundings that an alternative to searching the image for spatially localized features is to
make use of the information captured by the entire image to extract a whole-image feature.
Whole-image features are not designed to identify specific spatial structures such as obsta-
clesor the position of specific landmarks. Rather, they serve as compact representations of
the entire local region. From the perspective of robot localization, the goal is to extract one
or more features from the image that are correlated well with the robot’ s position. 1n other
words, small changesin robot position should cause only small changesto whole-image fea-
tures, while large changes in robot position should cause correspondingly large changes to
whole-image features.

We present two techniques for whole-image feature extraction below. The first technique
is another popular application of the image histogramming approach. The resulting image
histogram comprises a set of whole-image features derived directly from the pixel informa-
tion of an image. The second technique, tiered extraction, covers approaches in which a
whole-image feature is built by first extracting spatially localized features, then composing
these features together to form a single meta-feature.

Direct Extraction: Image Histograms

Recall that we wish to design whole-image features that are insensitive to small amount of
robot motion while registering significant changes for large-scale robot motion. A logical
first step in designing avision-based sensor for this purposeisto maximize thefield of view
of the camera. Asthefield of view increases, small-scale structure in the robot’ s environ-
ment occupiesasmaller proportion of theimage, thereby mitigating the impact of individual
scene objects on image characteristics. The catadioptric camera system, now very popular
in mobile robotics, offers an extremely wide field of view [100]. Thisimaging system con-
sists of a high-quality CCD camera mounted, together with customized optics, towards a
parabolic mirror. The image provides a 360° view of the robot’s environment, as shown in
Figure 4.49.

The catadioptric image is a 360° image warped onto atwo-dimensional image surface. Be-
cause of this, it offers another critical advantage in terms of sengitivity to small-scale robot
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Fig4.49 Two typical image acquired by the OmniCam catadioptric camera system.

motion. If the camerais mounted vertically on the robot so that the image represents the
environment surrounding the robot (i.e. its horizon), then rotation of the camera and robot
simply resultsin imagerotation. In short, the catadioptric camera can be rotationally invari-
ant to field of view.

Of course, mobile robot rotation will still change the image; that is, pixel positions will
change, although the new image will simply be arotation of the origina image. But wein-
tend to extract image features via histogramming. Because histogramming is a function of
the set of pixel values and not the position of each pixel, the processis pixel position-invari-
ant. When combined with the Catadioptric camera’sfield of view invariance, we can create
asystem that isinvariant to robot rotation and insensitive to small-scale robot trandation.

A color camera s output image generally contains useful information along multiple bands:
r, g and b values as well as hue, saturation and luminance values. The simplest histogram-
based extraction strategy is to build separate 1D histograms characterizing each band. Giv-
en acolor cameraimage, G, thefirst step isto create mappings from G to each of then avail-

able bands. We use G, to refer to an array storing the values in band i for all pixelsin G.

Each band-specific histogram H, is calculated as before:
1. As pre-processing, smooth G; using a Gaussian smoothing operator
2.Initidize H; withnlevels: H[j] = 0for =1, .., n
3. For every pixel (xy) in G; increment the histogram: ,[G;[%, y]]+=1

Given the image shown in Figure 4.49, the image histogram technique extracts six histo-
grams (for each of r, g, b, hue, saturation and luminance) as shown in Figure 4.50In order to
make use of such histograms as whole-image features, we need ways to compare to histo-
grams to quantify the likelihood that the histograms map to nearby robot positions. The
problem of defining useful histogram distance metricsisitself an important subfield within
theimageretrieval field. For an overview refer to [101]. One of the most successful distance
metrics encountered in mobile robot localization is the Jeffrey Divergence. Given two his-

tograms H and K, with h, and k; denoting the histogram entries, the Jeffrey divergence
d(H,K) is defined as:
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[ Red Histogram I | [ Hue Histogram

Fig 4.50 Sx 1D histograms of the image above. A 5 x 5 smoothing filter was con-
volved with each band before histogramming.
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Using measures such as the Jeffrey divergence, mobile robots have used whole-image his-
togram featuresto identify their position in real time against adatabase of previously record-
ed images of locations in their environment. Using this whole-image extraction approach,
arobot can readily recover the particular hallway or particular room in which it is located
[102].

Tiered Extraction: Image Fingerprint Extraction

An dternative to extracting a whole-image feature directly from pixel valuesisto use a
tiered approach: first identify spatially localized features in the image, then trandate from
this set of local featuresto a single meta-feature for the wholeimage. We describe one par-
ticular implementation of thisapproach, in which the resulting whole-image featureiscalled
theimagefingerprint [103]. Aswith other whole-image extraction techniques, because low
sensitivity to small robot motionsis desired, the system makes use of a 360° panoramic im-
age, here constructed as a mosaic of images captured with a standard CMOS-chip camera.

Thefirst extraction tier searches the panoramic image for spatially localized features: verti-
cal edges and 16 discrete hues of color. The vertical edge detector isa straightforward gra-
dient approach implementing a horizontal difference operator. Vertical edges are "voted
upon” by each edge pixel just asin avertical edge Hough transform. Asdescribed in Section
(4.3.2.1), an adaptive threshold is used to reduce the number of edges. Suppose the Hough

table’ stalliesfor each candidate vertical line have amean 1 and astandard deviation o. The
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Fig4.51 Two panoramic images and their associated fingerprint sequences[103].
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Fig4.52 Three actual string sequences. The top two are strings extracted by the ro-
bot at the same position [103].

chosen threshold issimply p+ o.

Vertical color bands are identified in largely the sameway, identifying statistics over the oc-
currence of each color, thenfiltering out all candidate color patches except those with tallies
greater than p+ o. Figure 4.51 shows two sample panoramic images and their associated
fingerprints. Note that each fingerprint is converted to an ASCII string representation.

Just aswith histogram distance metricsin the case of image histogramming, we need aquan-
tifiable measure of the distance between two fingerprints strings. String matching algo-
rithms are yet another large field of study, with particularly interesting applicationstoday in
the areas of genetics[96]. Note that we may have stringsthat differ not just in asingle ele-
ment value, but even in their overall length. For example, Figure 4.52 depicts three actual
sequences generated using the above algorithm. The top string should match Place 1, but
note that there are deletions and insertions between the two strings.

The technique used in the fingerprinting approach for string differencing isknown asaMin-
imum Energy Algorithm. Taken from the stereo vision community, this optimization-based
algorithm will find the minimum energy required to "transform” one sequence into another
sequence. Theresult isadistance metric that isrelatively insensitive to the addition or sub-
traction of individual local features while till able to robustly identify the correct matching
string in avariety of circumstances.

It should be clear from the previous two subsections that whole-image feature extraction is
straightforward with vision-based perception and can be applicable for mobile robot local-
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ization. But it is spatially localized features that continue to play a dominant role because
of their immediate application to the more urgent need for real-time obstacle avoidance.
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