
The principal designer of the Sapphire window manager 
talks about its icons and user commands 

in this tutorial on the screen allocation package. 

The User Interface for Sapphire 

Brad A. Myers 

University of Toronto 

Sapphire (the Screen Allocation Package Providing 
Helpful Icons and Rectangular Environments) is a very 
powerful window manager running on the PERQ personal 
workstation.1 The PERQ has a high-resolution screen and 
special hardware to display graphics quickly. Sapphire was 
designed to support program development in the Accent2 

multiprocessing operating system. Companies (OEMs) that 
purchase PERQs may also use Sapphire in their final pro-
ducts, so unlike such other window managers as Star,3 Sap-
phire must be general purpose and highly flexible. Sapphire 
is now used by quite a large community at PERQ Systems 
Corporation, Carnegie-Mellon University, and elsewhere. 
It supports a full implementation of the covered window 
paradigm (where the rectangular windows can overlap like 
pieces of paper on a desk), which is described in another 
article.4 In Sapphire, windows can cover each other and can 
extend off the screen in any direction (and may be entirely 
offscreen). 

All window managers can be logically divided into three 
functions: (1) the implementation of the low-level graphics 
primitives (which includes preventing graphics from 
showing through covered portions), (2) the presentation of 
pictures to the user by the window manager (such as win-
dow title lines and icons), and (3) the operations that allow 
the user to manipulate windows. The latter two functions of 
a window manager are collected under the heading User In-
terface. This article presents the user interface of Sapphire 
and explains why it is novel and appealing. First, however, 
some background material is included for those who are not 
familiar with window managers. 

Background 

Personal workstations. Interest in window management 
systems has expanded with the proliferation of personal com-
puters. Personal workstations are personal computers that 
are used by only one person at a time but provide far more 
power than typical home computers. A personal workstation 
will usually have a processor that can execute over one 
million instructions per second, a hard disk that can hold over 
20 million bytes of data, a memory of at least one million 
bytes, some number of input/output options, such as RS-232, 
Ethernet, IEEE 488, floppies, etc., and a high-performance 
screen that is capable of graphics. Most personal workstations 
currently use high-resolution bit-map screens (about 800 x 
1000) where each point on the screen (called a pixel) is 
associated with one bit of memory. Each pixel can be either 
on or off (white or black). Many personal workstations have 
some sort of hardware that allows screen operations to run 
swiftly, and some offer color screens as an option. 

Most personal workstations run an operating system, such 
as Unix,5 that allows the user to run a number of different 
jobs (sometimes called processes) at the same time. For ex-
ample, the user might specify that a compilation should con-
tinue to run (in the background) while the user enters the 
editor to work on a different file. Even with the high perfor-
mance of a personal workstation, there will unfortunately 
always be jobs that cannot be processed instantly (i.e., fast 
enough so the user does not notice the delay). With 
multiprocessing the user does not have to wait idly for jobs 
to be finished, so time can be used more effectively. 

December 1984 0272-1716 84 1200-0013S01.00 1984 IEEE 



Window managers. If a user runs more than one process 
in most conventional systems, the input and output from the 
various processes can be confusingly intermixed on the 
screen. For example, the output from one process may ap-
pear while another process is listing a file and be missed en-
tirely, or the output might appear while running a screen 
editor or a graphics program and thereby mess up the screen. 
When two processes request input at the same time, the user 
may give the input to the wrong program. A window manager 
solves these problems by simulating several terminals on the 
same physical screen. The input and output for the different 
"virtual terminals" is kept separate by the window manager. 
Each of the virtual terminals is called a window. This is a 
simplification, however, since windows are also used in many 
other ways. There are several kinds of window managers, 
differentiated by where they allow windows to be and how 
the user controls the windows. All have as their basic goal 
allowing the user to control a number of separate activities 
more easily. 

Since there is only one keyboard, but multiple windows, 
it is clear that there must be some way to identify where typ-
ing is directed. Some window managers call the window ac-
cepting input the active window, but this is often confusing, 
since many windows may be actively displaying output at 
the same time in such window managers as Sapphire. 
Therefore, in our system we coined the term Listener to refer 
to the window accepting typing, since it is "listening" to 
the keyboard. The user is provided with mechanisms for 
changing the Listener so it is possible to talk to any process. 

■Path = /User/Brad/ 

\V| 

IShowScreen 

\\2 

Compiler Y1Z.4 

W3 

Figure 1. Three Sapphire windows. Window W3 is covering win-
dow W2. and both windows W3 and W2 are covering W1. W1 is on 
the "bottom" and W3 is on the "top." W2 has a gray border to 
show that it is the Listener (accepting user input). 

The covered window paradigm. Almost all window 
managers require that windows be rectangular. A very sim-
ple window manager might divide the screen horizontally 
and/or vertically into some number of sections of fixed size. 
The next level of complexity is to have a number of variable-
size windows that are not allowed to overlap. For example, 
the Cedar environment6 from Xerox PARC CSL allows win-
dows to be any height that fits on the screen in two vertical 
columns. This technique has several advantages: It can readily 
create windows and control their placement automatically, 
and it can implement graphic operations more easily. A prob-
lem in a nonoverlapping system is that it may be difficult 
for the user to get a window big enough to present sufficient 
contextual information to accomplish the task easily. Imagine 
trying to edit a file when you are only allowed to see three 
or four lines at a time! Even if it is possible to change a win-
dow's size and location, the user may feel severely restricted, 
since windows cannot be overlapped. 

Several window managers allow the windows to overlap 
on the screen. The windows can be thought of as pieces of 
paper, and the screen can be thought of as a desk.7 Thus a 
window may be on top of another window, just as one piece 
of paper may be on top of another piece of paper. The win-
dow that is behind is covered by the window on top, and 
the parts that are underneath the top window do not show 
through (see Figure 1). There is a total ordering imposed 
on all the windows where windows higher in the order cover 
windows that are lower. Windows that do not interact are 
still ordered. The top window is not covered by any win-
dows, and the window that is most covered is said to be on 
the bottom. Windows may also extend off the screen in any 
direction, with the parts not on the screen simply not show-
ing. The covered window paradigm was developed at Xerox 
PARC for DLisp7 and Smalltalk.8 

The advantage of this technique is that there can be a 
number of large windows that would not all fit on the screen 
if they were required to be side by side. The user can then 
rearrange these windows as needed to make the window of 
interest visible. The disadvantages are that the covered win-
dow scheme is fairly difficult to implement, and the screen 
may become cluttered if there are lots of windows. Clearly, 
a window manager implementing a covered window 
paradigm can simulate one without covered windows, if the 
user prefers. 

Manipulation. For a covered window scheme to be used 
easily, the user must be able to manipulate the windows readi-
ly. At a minimum, the user should be able to bring a specified 
window, which may previously have been covered by other 
windows, to the top. The user must also have some way of 
specifying which window should be the Listener. Other 
operations that are useful are the ability to move a window 
around the screen, to change its size, and to send it to the 
bottom. The last is often used to locate a window that is totally 
covered by other windows. The typical way to find the win-
dow in many window systems is to send other windows to 
the bottom until the desired window appears on top. 

Some window managers require that the Listener window 
always be on top. From an implementation point of view, 
this is not necessary. If the window manager supports out-
put to windows that are covered, allowing the Listener to 
be covered presents no additional difficulty. The user might 

14 IEEECG&A 



have the Listener window full screen, for example, yet want 
to copy some information from some other, smaller, win-
dow. The smaller window could then be brought to the top 
for inspection, while typing continued to the Listener, which 
would now be partially covered. 

Display. One of the difficult things to implement in a 
covered window system is the display of text and graphics 
in windows that are partially covered. The covered window 
system must ensure that the text and graphics for one win-
dow are not displayed in the parts that are covered by other 
windows. Some systems handle this problem by requiring 
that the window getting output never be covered. Other 
systems, such as the Lisp Machine,9 handle this by sending 
all the output to special offscreen buffers and then copying 
the visible portions onto the screen. This requires that the 
display operations be done twice, once to the offscreen buf-
fer and then once to the screen (for portions that are visi-
ble). To avoid this overhead, Sapphire and the Blit terminal10 

divide the screen window into rectangles that may be either 
covered or visible. For the visible rectangles the output is 
directed to the screen, but for the covered rectangles the out-
put is (optionally) directed to an offscreen buffer. This off-
screen buffer is then used to regenerate the picture if the win-
dow becomes uncovered. 

Pointing device. Most personal workstations come with 
some form of pointing device, which returns a two-
dimensional value that allows the user to identify locations 
on the screen by simply pointing to them. The pointing device 
may also be used for specifying window size and position, 
for identifying characters in an editor, for drawing lines in 
a graphics program, and for transferring a picture (such as 
a map) into the computer by specifying points (this is called 
digitizing). Examples of pointing devices (see Figure 2) are 
lightpens, electromagnetic tablets, touch-sensitive surfaces, 
and mechanical or optical "mice."11 Light pens are used by 
pointing directly to the screen, but the user moves the other 
devices on the desk or on a special surface, and a small pic-
ture (the tracking symbol), follows the movement on the 
screen. Some touch-sensitive surfaces are actually mounted 
directly on the screen, but these usually have tracking sym-

bols too. In many personal workstations the picture for the 
cursor can be changed, but a common picture is an arrow 
pointing to the upper left (Number 1 in Figure 7). 

Many pointing devices can be operated in two modes: ab-
solute and relative. In absolute mode the position of the point-
ing device on a special surface specifies where the tracking 
symbol will be on the screen. For example, if the pointing 
device is in the upper left corner of the surface, then the track-
ing symbol will be in the upper left corner of the screen. 
In relative mode the actual position has no meaning; only 
movements are important. Thus, no matter where the track-
ing symbol is, putting the pointing device on the surface and 
moving it in some direction will move the tracking symbol 
by a proportional amount in the same direction. Relative 
mode is preferred by many users, since only a portion of 
the surface needs to be used (or accessible). 

Such devices as mice can only provide relative mode. Ab-
solute mode, however, is necessary for digitizing and other 
applications. A device that provides absolute mode can 
simulate relative mode fairly easily in software. 

Pointing devices often have one or more buttons. (There 
are typically one to three buttons on a mouse.) Elec-
tromagnetic tables come with a pen (called a stylus) with one 
button (pressing down on the pen tip is interpreted as a but-
ton push) or a three-to-25-button puck (see Figure 2). The 
buttons on these devices are usually pressed by the user to 
tell the computer that the current position of the pointing 
device should be interpreted in some way. A common way 
to identify a window, for example, is to move the pointing 
device until the tracking symbol is over the desired window 
and then press one of the buttons. 

Icons. Even with the operations specified above, it is 
sometimes difficult to manage a large number of windows. 
The screen gets cluttered, and finding a desired window is 
very difficult. Icons were first used as a way of representing 
a window by Xerox in the Star.3 The Apple Lisa12 and Macin-
tosh use icons in essentially the same manner. The window 
seems to have been "shrunk" down until only its icon is visi-
ble. (In Sapphire the icon and the window exist at the same 
time, as will be explained later. This differs from the opera-
tion of icons in the Star and Lisa.) The icons at Xerox and 

Figure 2. Examples of different pointing devices. These are not drawn to scale. The first is a typical three-button 
mechanical or optical mouse. The second is a stylus on an electromagnetic tablet, and the third is a four-button puck, 
which operates on the same type of tablet. 

December 1984 15 



Apple are typically little pictures, about the size of a postage 
stamp, that attempt to represent pictorially the process run-
ning in the window (see Figure 3). For example, a mail pro-
gram might be represented by a picture of a mailbox. When 
finished with the mail program, the user gives a command 
that shrinks the mail program's window down to its icon. 
The window is no longer on the screen, and the little icon 
is neatly put out of the way at the edge of the screen. When 
the mail program is needed again, the user points to the icon 
for the mail program (using the pointing device) and gives 
some command. Icons can also represent such static objects 
as documents, and moving one of these to a process icon 
causes the process to operate on the object. Icons help users 
understand how to operate the system because they are a 
metaphor of the real world. Saving a file in a directory is 
presented as putting a "document" icon in a "folder" icon 
in a "file cabinet" icon. As explained below, Sapphire views 
icons differently and has greatly expanded their functionali-
ty, so they can be used for multiple process monitoring, as 
well as for window control. 

Presentation of Sapphire windows 

Windows in Sapphire usually have title lines and borders 
(see Figure 1). Application programs may create windows 
without either, but the borders are useful for showing where 
the windows are, and the title lines are useful for displaying 
status information. For example, in a multiple directory 
system such as Unix the title line might contain the current 
directory. A window running the compiler might have the 
version number of the compiler and the name of the file be-
ing processed displayed in the title line. The title line is shown 
in reverse video at the top of the window (Figure 1). 

It is important that the user be able to easily determine 
which window is the Listener. Other systems simply iden-
tify the Listener by which window contains the tracking sym-
bol. Since Sapphire does not change the Listener when the 
pointing device is moved, some graphic method is needed. 
Sapphire shows the Listener by changing the border from 
a single hairline to two hairlines surrounding a gray area (see 
W2 in Figure 1). Many other systems show the Listener by 

Macintosh 

w\ 
Cloct * 

I 
Trasf 

η 
i Can 

D 
Trash Can MacPaint MacWrite Document 

Figure 3. Samples of icons used in the Apple Macintosh computer. 

Icon l 

! ! W W ^ 

l-op>·'· 
IIBIII I I I ! i l l I 

'A 

^ « « « » « W « « « « « « 

Icon 2 

Figure 4. Expanded view of icons in Sapphire. In icon 1, (a) is the error signal, (b) shows that the process is waiting for user input, 
and (c) is the application-defined attention signal, (e) and (f) are two "percent-done progress bars," and (g) shows that the 
associated window is offscreen. Icon 2 corresponds to the Listener (the border is shown in gray), and it has its first progress bar 
(i) showing random progress. The process associated with icon 2 is "Copy" (h). In icon 1, the compiler has shown (d) the name of 
the program being processed ("C" for compiler, and "Foo" is the name of the program). 

16 IEEECG&A 



simply highlighting the title line in some manner, but this 
has the disadvantage that if the entire top of the Listener's 
window is covered or offscreen, there is no visible indica-
tion. Also, highlighting the entire border seems to make the 
Listener easier to find when scanning the screen. Another 
advantage of highlighting the border rather than the title line 
is that almost all windows will have borders, but an applica-
tion may create a window without a title line if no status in-
formation is needed (and Sapphire does allow this). In this 
case, you still want to know if the window is the Listener 
or not. 

Icons 

The icons in Sapphire are very different from the icons 
in Lisa or the Star. Icons were introduced on the Star primari-
ly to make the operations on the computer seem more like 
the corresponding operations in the office environment, and 
thereby make the system easier for the naive user to learn. 
Consequently, the icons are pictures of the operations they 
represent. The Lisa uses icons in the same way. This has 
a number of severe limitations. First, many operations do 
not have obvious pictorial representations. Some pictures may 
be ambiguous, hard to understand, or even offensive to some 
users. In addition, while such representations as these icons 
may help the novice learn the system, they may actually 
hinder the expert user.13 Icons in Sapphire do not attempt 
to enforce a unified analogical view of the system, although 
application programs that use Sapphire may use icons in this 
manner. 

The icons in Sapphire were designed with an entirely dif-
ferent goal in mind. Sapphire's icons are intended to enhance 
the user's productivity when executing multiple tasks con-

currently. As was explained above, users will often multi-
task to increase their efficiency. However, people easily lose 
track of what they are doing and need aids to help plan, 
monitor, and control the various tasks operating at the same 
time. Therefore, the icons in Sapphire present six pieces of 
information about the process being run, as well as two pieces 
of information about the status of the window (see Figure 4). 

Process name. First, there is the process name (this is (d) 
and (h) in Figure 4). The application program may optionally 
replace this with some other useful names. Thus, the icon 
for a compiler might use "C-Foo" when compiling a file 
titled Foo, rather than just "Compiler." 

Progress bars. In the icon there are also two "percent 
done progress bars" (these are (e), (f), and (i) in Figure 4). 
Progress bars function like the giant thermometers used to 
mark progress in charity drives. They give the user enough 
information at a quick glance to estimate how much of the 
task has been completed. These are kept up to date by the 
application program (or by the system for certain operations), 
so the user can always check how far along the process is. 
For example, a compiler can report how far it is through 
the file. The first progress bar ((e) and (i) in Figure 4) is 
used by the application program and is repeated in the title 
line of the window underneath the text (Figure 5). The se-
cond progress bar (see (f) in Figure 4), which appears only 
in the icon, is used for such aggregates as command files, 
to tell how much of the entire job has been completed. A 
formal study has shown that users prefer systems with pro-
gress bars.14 

Most applications can calculate or estimate what percen-
tage of the work has been completed, but for those that can-
not, Sapphire provides "random progress," which shows 

[cons 

■ 
4ΒΠ 

y::::::::-::r"-^ 

£ m» ' 

\ • 

Figure 5. A typical Sapphire icon window. Note that this window can be covered by other windows. Icon (a) is for the Mail 
program which is using the attention signal (exclamation point) to show that new mail has arrived. The three dots show 
that the window is offscreen. Icon (b) is for the editor working on the file "Demo." It is waiting for user-input (the 
keyboard), and is showing "random progress." It is also offscreen. Icon (c) has the error signal (bug) displayed, as well as 
user input and attention signals. It also has two "percent-done progress bars/1 the first showing that Tester is about 60% 
complete, and the second showing that the entire job is about 20% complete. Icons (d) and (f) have application-defined 
pictures in them. Icon (e) has a gray border to show that it corresponds to the Listener window. Icon (g) and its window 
show that the first progress bar is repeated in the window title line. 

December 1984 17 



that work is progressing by continually XORing vertical lines 
at random places along the progress bar. This displays a con-
tinually changing pattern that shows that the program is pro-
cessing, but is not confused with normal progress. In Figure 
4, (i) shows random progress. 

Progress bars have proven to be an extremely helpful user 
interface feature for a number of reasons: They make the 
users feel better about the system because it is obvious that 
the program is making forward progress on requests and has 
not gotten into an infinite loop. Many systems present a 
"busy" picture, such as an hourglass, clock, or a Buddha 
(for patience), to show that they are computing, but since 
this is static, it does not show that the program has not crashed 
or how swiftly it is progressing toward completion. Indepen-
dent of any other advantages, this lowering of the user's anx-
iety is an important benefit. Users can also use the progress 
information to estimate when jobs will be completed so they 
can schedule their time more effectively, either in other com-
puter tasks or in off-computer activities. Thus, users may 
be more productive when provided with progress 
information. 

A major complaint about progress bars is that it is too dif-
ficult for applications programs to compute what percent of 
the job they have completed. In the PERQ POS operating 
system,15 however, experience has shown that most applica-
tions can provide this information with only a little work. 
Since the display is very low resolution, an approximation 
is all that is needed. Estimates of progress can usually be 
calculated based on the amount of an input file that has been 
read, for example, and (possibly) heuristics based on past 
performance. In some cases operating systems can provide 
useful information that will allow progress to be computed 
and displayed.15 

The last three pieces of process information provided by 
Sapphire are shown as pictures in the icon. One picture tells 
whether there has been an error in the last activity, another 
tells when the process is waiting for user input, and the third 
is reserved for specific application-defined attention signals. 
The actual pictures used (see Figure 4) are a bug (a), a 
keyboard (b), and an exclamation point (c), but these can 
easily be changed by the user or application (see "Corporate 
Identity for Iconic Interface Design . . . "by Aaron Mar-
cus on p. 24 of this issue). The pictures are present when 
the conditions are true and absent when they are false. The 
attention signal might be used, for example, by a mail pro-
gram to report that new mail has arrived. The visual signals 
are nonintrusive, unlike an auditory beep, so the user can 
ignore them, but they are easy to see if desired. Another ad-
vantage over a beep is that if the user chooses to postpone 
handling a condition, the picture stays on the screen as a 
reminder that it should be handled eventually. 

Window status. An icon also displays two pieces of infor-
mation about the status of the window. First, the border of 
the icon for the Listener is highlighted in the same manner 
as the window itself (in Figure 4, icon 2 corresponds to the 
Listener). Second, the icon displays a small picture if the 
window has been moved entirely off the screen (see (g) in 
Figure 4). 

Although the icons are small (64 x 64 pixels each), they 
are easy to interpret, and the information is displayed in a 
convenient manner. The user can simply scan the icons to 

deduce the state of the entire computer and easily see which 
processes require attention. Of course, if the default infor-
mation described above is not appropriate for some processes, 
arbitrary pictures can be displayed in the icon (as was done 
by two processes in Figure 5). In this way, the icons of the 
Star or Lisa can be simulated by Sapphire. 

Icon window. In almost all other window managers with 
icons an icon appears when a window is removed from the 
screen. Thus the window either is displayed or has been 
shrunk down so that only the icon shows. In Sapphire, 
however, it seems clear that we want icons for all windows 
displayed at all times, since they provide so much useful 
information. There is no logical difference between a win-
dow that is totally covered by other windows and one that 
is offscreen; both are invisible to the user. Therefore, icons 
in Sapphire are visible for all windows. A window may still 
be removed from the screen in Sapphire by simply moving 
it so that it is totally offscreen (see next section). The icons 
are therefore associated with a window rather than an alter-
native representation for it. 

Since the icons and the windows they represent can be on 
the screen at the same time in Sapphire, it might be difficult 
to specify whether such operations as "move" should operate 
on an icon or on its window. To alleviate this problem, Sap-
phire groups all icons together in one window. Thus, the icons 
as a group can be moved around or removed altogether if 
the user does not like icons. The icon window can be covered 
by other windows, and its size and position can be changed 
in the same manner as any other window. 

The icons in the icon window are not rearranged except 
on user command. Thus, when a window is deleted, its icon 
is deleted, but the hole is not filled until another window is 
created. Users will probably remember which window goes 
with which icon by position, so it is important not to rear-
range the icons without the user's permission. Of course, 
there are also commands to identify the icon for a window 
and the window for the icon if the user forgets. This will 
be discussed later. 

User interface 

There are a number of trade-offs to be considered in design-
ing a window manager. For example, the larger the icons 
are, the more information they can display, but then there 
is less screen space for windows. Similarly, the user inter-
face must balance a number of competing goals. 

One of the goals of Sapphire is to provide a rich and power-
ful user interface without restricting the user interface of ap-
plications running under it. This is important, since the user 
will be giving commands to the application program far more 
often than to the window manager. Sapphire will be used 
to support many different types of applications with different 
requirements for input and output. Therefore, Sapphire, 
unlike most other window managers, does not reserve any 
of the buttons on the pointing device exclusively for use by 
Sapphire. Any button pressed or released inside the Listener 
window is sent to the application running in that window. 
To give window-manager commands for a window, the user 
must press a button in the title line or in the icon for that 
window. 

IEEECG&A 



Input devices. Sapphire is also designed to run with a 
number of different input devices, one of which is a one-
button stylus. This provides two constraints. First, all opera-
tions have to be possible with one button, and second, the 
point position cannot be used to determine which window 
is the Listener. This latter restriction arises from the fact that 
the pointing device returns random positions when the pen 
is removed or laid on the tablet. If the position were deter-
mined simply by the position of the tracking symbol, then 
characters would be haphazardly given to different windows. 

A similar problem arises with mice or pucks when the 
device is accidentally bumped and the tracking symbol travels 
into another window. The user might not notice and could 
thus give the wrong command to the wrong program. 
Sometimes applications also need to know the tracking sym-
bol position, even when it is outside the window. Therefore, 
in Sapphire the user must take an explicit action by pressing 
a button in a window to change the Listener; just moving 
the tracking symbol is not enough. The press that changes 
the Listener is not sent to the application program, since this 
might cause some undesired action. 

Another advantage of requiring an explicit press is that 
the pointing device can then be used in absolute or relative 
modes by different windows. As was explained above, ab-
solute mode is necessary for digitizing, but relative mode 
is preferred by most users for other applications. If the cur-
rent mode is relative, and then a window that uses absolute 
mode becomes the Listener, the tracking symbol will jump 
to the absolute location that is specified by the current posi-
tion of the pointing device. This may well be outside of the 
current Listener's window, but this causes no problem for 
Sapphire. 

Accelerators. A further important goal of Sapphire is to 
make the most common window manager operations very 
easy to specify. A single button press should be sufficient 
to give the most common commands. On the other hand, we 
want to provide a large number of different operations to 
increase the functionality of the system. Many window 
managers use "pop-up menus" for giving commands. These 
are small menus that appear when a button is pressed (see 
Figure 6). The user picks an operation from the menu, and 
then the menu disappears, restoring the picture that was 
underneath. The advantage of pop-up menus is that they do 
not take any screen space when not in use, but a disadvan-
tage is that choosing an item takes a number of steps: first 
a press to get the menu, then a search to find the correct item 
in the menu, and finally a selection of that item. Pop-up 
menus also tend to be computationally expensive, so it may 
take a noticeable period of time before the menu appears. 
Experience has shown, with PERQ Sapphire and at Xerox,16 

that experts will be happy to memorize special "accelerators" 
to avoid using pop-up menus whenever possible. Sapphire 
provides accelerators, in addition to pop-up menus, in a man-
ner that is easy to learn and remember. The keystroke model17 

suggests that these accelerators will speed up expert 
performance. 

The commands available with a single button press in Sap-
phire (the accelerators) include top, bottom, moving a win-
dow, and changing its size. Another provided operation is 
making a window full screen. This might be used, for ex-
ample, when more contextual information is desired during 

an editing session. The user can define whether "full screen" 
leaves the icons visible or not. When a window is made full 
screen, its old position and size are saved so the window can 
easily be returned to its original place. Similarly, there is 
a command to move the window entirely off the screen. This 
can be used to prevent the screen from getting cluttered with 
windows that are not in use. It also makes the window com-
putations less expensive, since offscreen windows are not 
considered. A command using the icon brings the window 
back to its original place on the screen. 

Assignment of commands. The title line of a window is 
divided horizontally into three sections: left, middle, and 
right. Since title lines are typically about five inches across, 
each section is about 1 Vi inches and is therefore easy to hit 
with the pointing device. The left and right sections have 
the same functions, since windows are often covered on one 
side or the other. The most common pointing device for Sap-
phire has three buttons, so we have 3 (buttons) x 2 (areas: 
left-right and center) = 6 (functions) available on the title 
line. The actual assignment of commands to locations can 
be defined by the user. This is useful for a number of reasons. 
First, it allows left-handed people to put the major commands 
under their index finger (when the puck or mouse is moved 
from the right to the left side, the primary button changes 
from the index to the ring finger). Another advantage is that 
novices can define all buttons to provide the same function 
(e.g., pop-up menu) and thereby avoid confusion until they 
are comfortable with the system. The best reason for allow-
ing this flexibility, however, is simply that different people 
want to operate in different ways. For example, some peo-

Figure 6. A pop-up menu over a background of a directory listing. 
The command HELP will be executed. 

| 
1 

DIRTREE. 

<--- £££· 
<—' DEF· 
-y z* . > € * · 

DISKIO.P 
::sr IG.S 
DiskTest 
:-:S>UTIL 
DiskUtil 
DoSwap.S 
d p . b i t s . 
d p . b o t t o 
dp.comma 
d p . c o n n . 
dP ·dd t 3 . 
dp.edit . 
dp. f i led 
dp.fonts 
dp.fc.se 
d p . s r a p H 

dp.helpJ 
dP. ; rimed 
dP. ; ri -1 J 
dp* i npu t ! 
db. o-SE 

CU?SCP Floi 
- -^ · 

COHPILE 
FOPTPHN 

COPY 
DELETE 

- DETAILS 
DIPECTOPY 

H HllaSfl DISMOUNT 
EDIT 

PPOSE 
FLOPPY 

LINl· 
LOGIN 
Mfli IWT 

j GET' 

: : Defs.Seg 

;P fnanifers.Seg 
[: lit lS«SeS 
dOfl ■ PäH 

tdorri. i^_ a 
PUN 
SEG 

JSEP.SEG 
It ils-PAS 
JTILS.SEG 
r t - r s f o n . s e g 
■ Set 
.mal e 
.put 
'ta. 
«7.90 
>a?b 
laovb? 
iäovb?.90 
) i n . c m d 
>yte · s^Q 
£THDDP:SEG 
Stuff . SEG 
'IHESTHtfP.PHS 
rI(lESTHMP.SEG 

December 1984 19 



pie would like "top" and "Listener" to happen together, 
while other people prefer these operations to be performed 
separately. 

Default assignments. The default assignments of opera-
tions are as follows: On the ends of the title line are (1) top, 
(2) bottom, and (3) pop-up menu. The pop-up menu pro-
vides all of the commands that can be given directly from 
the title line, so a novice can always find commands easily. 
In addition, it allows users with a stylus (one button) to issue 
all commands. The pop-up menu also includes the command 
"help" which generates a window in the center of the screen 
explaining all commands. The pop-up menu contains a 
number of additional commands, including some for such 
process control as abort, suspend, and create new shell. 

In the center of the title line the more esoteric functions 
are provided: (4) move/grow, (5) full screen or back from 
full screen, and (6) offscreen. After selecting "move/grow," 
the user then selects a position on the window to move or 
grow from. The corners are grow points, and the sides have 
both move and grow points. Appropriate feedback shows 
which operation will be performed, as described below. Since 
windows in Sapphire may be moved partially offscreen in 
any direction, it is necessary to be able to move them from 
any side. It is also useful to be able to grow a window from 
different points if the user is trying to align one window with 
other windows. During the move and grow operations, and 
also during window creation, hairlines are displayed to show 
the outline for the window so that the user can place it ac-
curately. This feedback also makes it easy to identify what 
the system expects the user to do. 

The icons are too small to have three areas, so we are 
limited to three functions total (one for each button). One 
button performs "top" and "Listener" and "back from off-
screen" all at once. Another button provides a pop-up menu 
with all of the commands, and the third button identifies the 
window that corresponds to the icon. This is accomplished 
by blinking the window and the icon, and drawing lines from 
the corners of the icon to the corners of the window. If the 
window is covered, the lines show where the covered win-
dow would be if it were brought to the top, so the user can 
send the appropriate windows to the bottom to make it visi-
ble. Of course, the user can simply bring the window to the 
top using the first icon command. Again, a user with a one-
button stylus can perform these operations using the pop-up 
menu. 

Feedback. With all of these different functions, it seems 
clear that the user will not always remember which button 
will result in which action. In Sapphire there is a simple 
method, which does not penalize the experts, for showing 
the operation that will occur. When a button is pressed, the 
tracking symbol changes to a picture that shows the opera-
tion that will be performed (see Figure 7). If this is the desired 
operation, then the button is simply released. If this is not 
the desired operation, then the user can move the tracking 
symbol around to the correct place (if in the title line) or 
move it away before releasing to abort. Thus the expert can 
simply press and release without waiting for the picture, and 
the novice can check all operations before executing them. 
Some systems provide an "undo" command, so novices can 
execute a command and then undo it if it was the wrong one. 

Users prefer knowing in advance what command they will 
execute, however, so Sapphire provides feedback before 
commands are executed. All commands can easily be 
reversed or aborted in Sapphire, so a special "undo" is not 
needed. 

While performing such multistep tasks as growing a win-
dow or choosing from a pop-up menu, Sapphire also displays 
an appropriate tracking symbol picture. This can be used, 
for example, to verify whether a "move" or a "grow" will 
be performed. The tracking symbol picture unambiguously 
shows the user what to do, which reduces the confusion and 
difficulty. Also, the user can always abort these operations 
by hitting a keyboard key, so the user is never stuck in a 
mode without knowing how to leave. 

The default tracking-symbol pictures that are used were 
drawn by the author and a graphic artist (see Figure 7), but 
they can easily be changed. For example, other versions of 
the pictures are shown in Aaron Marcus's article on p. 31. 

Keyboard commands. For some reason there are a 
number of people who prefer not to use a pointing device. 
Therefore, all commands in Sapphire are also available from 
the keyboard. Since there are a number of commands, we 
use a special prefix key (that does not have a standard ASCII 
interpretation). This avoids the problem of taking many keys 
away from application programs. The keyboard commands 
are also useful if the pointing device is broken, or if some 
process has reserved it or changed the tracking in arbitrary 
ways. For example, Sapphire allows application programs 
to specify that the tracking should be on a grid or restricted 
within a specified box or turned off altogether. This makes 
the operating system more efficient, since the application pro-
gram does not have to wait in a busy-loop, monitoring the 
pointing device. However, since the prefix key (which can 
be changed by users) returns the tracking to the standard 
default, we have ensured that users can always give com-
mands either from the keyboard or the pointing device. 

Most keyboard commands operate on the current Listener. 
Some commands, however, are global. For example, one 
of the keys on the PERQ keyboard is labeled "Help," and 
this provides help for Sapphire if typed after the prefix key. 
Another global command displays the icon window if it has 
been moved offscreen or covered. 

To designate different windows as the Listener using the 
keyboard, there are a pair of commands that change the 
Listener to another window in a certain order. Currently, 
there is a ring of windows ordered temporally by the time 
they were last the Listener. The window that was the last 
Listener is previous to the current Listener, with the win-
dow previous to that before it (see Figure 8). Thus, you can 
go to the previous Listener with one command. If the user 
is operating on a pair of windows, for example, this makes 
it easy to switch back and forth. When new windows are 
created, they are put at the "end" of the ring, which is just 
after the current Listener (see Figure 8). Thus the user can 
change from the current Listener to the most recently created 
window with one command; just move forward in the 
Listener ring. This will be useful when the user causes a new 
window to be created and then wants to operate on this 
window. 

Although this order is very appealing, it has a serious prob-
lem. When the Listener is changed from the current Listener 

IEEE CG&A 



11 

\ 
: Λ 

\ 

</=Τ HI 
* - ' ^ J K N W M 

Π 

L *·«| 

8. 
♦ / 

Lft* 

13. 
^ 

k . . * . _ . . . u 

Η.<\ 

X 
-(Ρ » > « · _ ^ 

23. Π ρ ρ :4. η 

5. 

20, 

15. 

Figure 7. Tracking symbols used in Sapphire. When the user presses down on the pointing device, the tracking 
symbol picture changes to show what operation will be performed. If the operation requires multiple actions (for 
example, when growing a window), the picture changes at each step to show what is expected next. The pictures 
above represent: 

1. The system default cursor. 

2. The default Sapphire cursor (a star Sapphire ring). 

3. Make this window be the Listener. 

4. Bring this window to the top. 

5. Send this window to the bottom. 

6. Top and Listener (used in the icon). 

7. Get a pop-up menu of commands. 

8. Return the window from full screen to original position. 

9. Make the window full screen. 

10. Identify the icon for this window. 

11. Change size or position of window 

from any side or corner. 

12. Change the window's size. 

13. Change the window's position. 

14. User-specified abort of any operation. 

15-22. Specify corner or side of the window. 

23. Identify the window for this icon. 

24. Get a pop-up menu from Icon. 

December 1984 21 



to the previous Listener, the old current Listener becomes problem occurs for moving forward. Therefore, there must 
the previous, and the old previous Listener is now the cur- be a mode, when the user is changing the Listener, that will 
rent. (This is more easily understood by reference to Figure allow access to all the windows. This mode has been a prob-
8.) Thus, the windows have switched places and the com- lern in practice, so we are investigating other orders for the 
mand "previous" will just oscillate between the top two win- Listener ring. The most obvious alternative order is to use 
dows, and no other windows can ever be accessed. The same the order of the windows in the icon window. 

22 IEEE CG&A 

Figure 8. The Listener ring. W1 is the current Listener. The previous Listener was W2, so giving the "previous-
Listener" command will move from W1 to W2. Listener before W2 was W3, etc. Window W6 was newly created and 
has never been Listener so it is at the "end" of the ring. The command "forward Listener" from W1 will get to W6. 
When windows are created, they are added "forward" from the current Listener (e.g., between W1 and W6 in this 
case). If W4 is made the current Listener, then it will be removed from the ring (so forward from W5 is W3, and 
previous to W3 is W5), and then added between W1 and W6. When using the "previous-Listener" command to 
move around the ring, a mode is needed to prevent W2 and W1 from just repeatedly swapping places. 



Conclusions 

Sapphire incorporates a number of innovations in window 
management and user interface design. Icons in Sapphire are 
used in a novel way to enhance the user's productivity when 
doing several tasks concurrently. Eight pieces of status in-
formation are shown in the icon, so the user can easily tell 
whether the process running in the window has gotten an 
error or wants attention and what percentage of the task has 
been completed. This allows the user to monitor and con-
trol multiple processes more easily. 

The user interface of Sapphire provides full functionality 
from both the pointing device and the keyboard and is easy 
for the novice while providing simple and powerful opera-
tions for experts. All commands are available from pop-up 
menus, but accelerators allow the most common commands 
to be executed with a single button press. The picture in the 
tracking symbol changes to show the operation that will be 
performed. This user interface promotes experimentation, 
since there is always appropriate feedback, and it is always 
possible to abort an operation once it has been started. This 
flexibility and power has been provided in a way that does 
not restrict application programs to a particular style of in-
teraction or a predefined analogic view of the system. 

Sapphire is currently in use by a growing community of 
people in different fields. Even though some of its features 
are not yet extensively used, the overall consensus is en-
thusiastically positive. Sapphire is continually being modified 
based on user feedback, as we discover how to make it even 
easier to use.B 

Acknowledgments 

The design of Sapphire grew out of discussions with Gene 
Ball, Fred Hansen, Dave Golub, and many others at 
Carnegie-Mellon University and PERQ Systems Corpora-
tion. Amy Butler and David Golub have been largely respon-
sible for maintaining Sapphire. For help and support with 
this article, I would like to thank my wife, Bernita Myers, 
and Alain Fournier, William Buxton, Brian Rosen, Joyce 
Swaney, and many others at the University of Toronto and 
PERQ Systems Corporation. 

5.D. M. Richie and K. Thompson, "The UNIX Time-sharing 
system," Comm. ACM, Vol. 17, No. 7, July 1974, pp. 
365-375. 

O.Richard J. Beach, "Experience with the Cedar Program-
ming Environment for Computer Graphics Research," Proc. 
Graphics Interface '84, May 28-June 1, 1984, Ottawa, On-
tario, Canada, pp. 65-79. 

7. Warren Teitelman, A Display Oriented Programmer's Assis-
tant, Palo Alto: Xerox PARC CSL-77-3, Mar, 8, 1977. 

8. Larry Tesler, "The Smalltalk Environment," Byte 
Magazine, Aug. 1981, pp. 90-147. 

9. D. Weinreb and D. Moon, Introduction to Using the Win-
dow System, Symbolics, Inc., 1981. 

10. Rob Pike, "Graphics in Overlapping Bitmap Layers," ACM 
Trans. Graphics, Vol. 2, No. 2, Apr. 1983, pp. 135-160. 

l l .W.K. English, D.C. Engelbart, and M.L. Berman, 
"Display Selection Techniques for Text Manipulation," 
IEEE Trans. Human Factors in Electronics, Vol HFE-8, 
No. 1, Mar. 1967. 

12. Gregg Williams, "The Lisa Computer System," Byte 
Magazine, Feb. 1983, pp. 33-50. 

13. Frank Halasz and Thomas P. Moran, "Analogy Considered 
Harmful," Proc. Human Factors in Computer Systems 
Conf., Mar. 15-17, 1982, pp. 383-386. 

14. Brad A. Myers, "The Importance of Percent-Done Progress 
Indicators for Computer-Human Interfaces," Dynamic 
Graphics Project, tech. memo, University of Toronto Comp. 
Sei. Dept., 1984. 

15. "PERQ POS Operating System Manual," PERQ System 
Software Reference Manual, POS Version G3, PERQ 
Systems Corporation, Pittsburgh, Pa. May 1983. 

16. Theresa Roberts, private conversation about experience at 
Xerox SDD on the Star development environment, Mar. 
1984. 

17. S. K. Card, T. P. Moran, and A. Newell, "The Keystroke-
Level Model for User Performance Time with Interactive 
Systems," Comm. ACM, Vol. 23, No. 7, July 1980, pp. 
396-410. 

References 

1. Brian Rosen, "PERQ: A Commercially Available Personal 
Scientific Computer," IEEE Compcon Digest, Spring 1980, 
pp 484-485. 

2.R. Rashid and G. Robertson, "Accent: A Communication 
Oriented Network Operating System Kernel," Proc. Eighth 
Symp. Operating Systems Principles, Dec. 1981, Asilomar, 
Calif., pp. 64-75. 

3. David Canfield Smith, Charles Irby, Ralph Kimball, Bill 
Verplank, and Erik Harslem. "Designing the Star User In-
terface," Byte Magazine, Apr. 1982, pp. 242-282. 

4. Brad A. Myers, "A Complete Implementation of Covered 
Windows for a Heterogeneous Environment," Dynamic 
Graphics Project, tech. memo, U. of Toronto Comp. Sei. 
Dept., 1984. 

Brad A. Myers is a PhD candidate in 
computer science at the University of Toron-
to. From 1980 until 1983 he worked at PERQ 
Systems Corporation where he designed and 
implemented the Sapphire window manager 
and numerous PERQ demonstrations for the 
Siggraph equipment exhibition. His research 
interests include user interfaces, interaction 
techniques, window management, program-
ming environments, debugging, and graphics. 

Myers received the BS and MS degrees from the Massachusetts In-
stitute of Technology. While attending MIT, he was a research in-
tern at Xerox PARC. He is a member of Siggraph, ACM, the Cana-
dian Information Processing Society, and the IEEE Computer 
Society. 

Myers's address is Computer Systems Research Institute, Univer-
sity of Toronto, Toronto, Ontario, Canada, M5S 1A4. 

PERQ's address is PERQ Systems Corporation, 2600 Liberty 
Avenue, P.O. Box 2600, Pittsburgh, PA, USA, 15230. 

December 1984 23 


