
Worst-Case E�cient Priority Queues�Gerth St�lting BrodalyAbstractAn implementation of priority queues is presented thatsupports the operations MakeQueue, FindMin, Insert,Meld and DecreaseKey in worst case time O(1) andDeleteMin and Delete in worst case time O(log n). Thespace requirement is linear. The data structure presented isthe �rst achieving this worst case performance.1 IntroductionWe consider the problem of implementing priority que-ues which are e�cient in the worst case sense. The op-erations we want to support are the following commonlyneeded priority queue operations [11].MakeQueue creates and returns an empty priorityqueue.FindMin(Q) returns the minimum element containedin priority queue Q.Insert(Q; e) inserts an element e into priority queue Q.Meld(Q1; Q2) melds priority queues Q1 and Q2 toa new priority queue and returns the resultingpriority queue.DecreaseKey(Q; e; e0) replaces element e by e0 inpriority queue Q provided e0 � e and it is knownwhere e is stored in Q.DeleteMin(Q) deletes and returns the minimum ele-ment from priority queue Q.Delete(Q; e) deletes element e from priority queue Qprovided it is known where e is stored in Q.The construction of priority queues is a classicaltopic in data structures [1, 2, 3, 4, 5, 6, 7, 10, 12, 15, 16,17]. A historical overview of implementations can befound in [11]. There are many applications of priorityqueues. Two of the most prominent examples are sort-ing problems and network optimization problems [13].�This work was partially supported by the ESPRIT II BasicResearch Actions Program of the EC under contract no. 7141(project ALCOM II) and by the Danish Natural Science ResearchCouncil (Grant No. 9400044).yBRICS (Basic Research in Computer Science), a Centre ofthe Danish National Research Foundation at: Computer ScienceDepartment, Aarhus University, Ny Munkegade, DK-8000 �ArhusC, Denmark. Email: gerth@daimi.aau.dk

In the amortized sense, [14], the best performancefor these operations is achieved by Fibonacci heaps [7].They achieve amortized constant time for all operationsexcept for the two delete operations which require amor-tized time O(logn). The data structure we presentachieves matching worst case time bounds for all op-erations. Previously, this was only achieved for variousstrict subsets of the listed operations [1, 2, 3, 15]. Forexample the relaxed heaps of Driscoll et al. [3] and thepriority queues in [1] achieve the above time bounds inthe worst case sense except that in [3] Meld requiresworst case time �(logn) and in [1] DecreaseKey re-quires worst case time �(logn). Refer to Table 1. If weignore the Delete operation our results are optimalin the following sense. A lower bound for DeleteMinin the comparison model is proved in [1] where it isproved that ifMeld can be performed in time o(n) thenDeleteMin cannot be performed in time o(logn).The data structure presented in this paper orig-inates from the same ideas as the relaxed heaps ofDriscoll et al. [3]. In [3] the data structure is basedon heap ordered trees where �(logn) nodes may violateheap order. We extend this to allow �(n) heap orderviolations which is a necessary condition to be able tosupport Meld in worst case constant time and if weallow a nonconstant number of violations.In Section 2 we describe the data structure repre-senting a priority queue. In Section 3 we describe aspecial data structure needed internally in the priorityqueue construction. In Section 4 we show how to im-plement the priority queue operations. In Section 5 wesummarize the required implementation details. Finallysome concluding remarks on our construction are givenin Section 6.2 The Data StructureIn this section we describe the components of thedata structure representing a priority queue. A lot oftechnical constraints are involved in the construction.Primary these are consequences of the transformationsto be described in Section 3 and Section 4.3. In Section 5we summarize the required parts of the constructiondescribed in the following sections.The basic idea is to represent a priority queue1

2 Gerth St�lting BrodalAmortized Worst caseFredman et al. [7] Driscoll et al. [3] Brodal [1] New resultMakeQueue O(1) O(1) O(1) O(1)FindMin O(1) O(1) O(1) O(1)Insert O(1) O(1) O(1) O(1)Meld O(1) O(log n) O(1) O(1)DecreaseKey O(1) O(1) O(log n) O(1)Delete/DeleteMin O(log n) O(log n) O(log n) O(log n)Table 1: Time bounds for the previously best priority queue implementations.by two trees T1 and T2 where all nodes contain oneelement and have a nonnegative integer rank assigned.Intuitively the rank of a node is the logarithm of thesize of the subtree rooted at the node. The details ofthe rank assignment achieving this follow below.The sons of a node are stored in a doubly linked listin increasing rank order from right to left. Each nodehas also a pointer to its leftmost son and a pointer toits parent.The notation we use is the following. We make nodistinction between a node and the element it contains.We let x; y; : : : denote nodes, p(x) the parent of x, r(x)the rank of x, ni(x) the number of sons of rank i that xhas and ti the root of Ti. Nodes which are larger thantheir parents are called good nodes | good because theysatisfy heap order. Nodes which are not good are calledviolating nodes.The idea is to let t1 be the minimum element andto lazy merge the two trees T1 and T2 such that T2becomes empty. Since t1 is the minimumelement we cansupport FindMin in worst case constant time and thelazy merging of the two trees corresponds intuitively toperformingMeld incrementally over the next sequenceof operations. The merging of the two trees is doneby incrementally increasing the rank of t1 by movingthe sons of t2 to t1 such that T2 becomes empty and t1becomes the node of maximum rank. The actual detailsof implementingMeld follow in Section 4.5.As mentioned before we have some restrictions onthe trees forcing the rank of a node to be related to thesize of the subtree rooted at the node. For this purposewe maintain the invariants S1{S5 below for any node x.S1 : If x is a leaf, then r(x) = 0,S2 : r(x) < r(p(x)),S3 : if r(x) > 0, then nr(x)�1(x) � 2,S4 : ni(x) 2 f0; 2; 3; : : : ; 7g,S5 : T2 = ; or r(t1) � r(t2).The �rst two invariants just say that leaves haverank zero and that the ranks of the nodes strictlyincrease towards the root. Invariant S3 says that anode of rank k has at least two sons of rank k � 1.

This guarantees that the size of the subtree rootedat a node is at least exponential in the rank of thenode (by induction it follows from S1 and S3 that thesubtree rooted at node x has size at least 2r(x)+1 � 1).Invariant S4 bounds the number of sons of a node thathave the same rank within a constant. This impliesthe crucial fact that all nodes have rank and degreeO(logn). Finally S5 says that either T2 is empty or itsroot has rank larger than or equal to the rank of theroot of T1.Notice that in S4 we do not allow a node to haveonly a single son of a given rank. This is becausethis allows us to cut o� the leftmost sons of a nodesuch that the node can get a new rank assigned whereS3 is still satis�ed. This property is essential to thetransformations to be described in Section 4.3. Therequirement ni(x) � 7 in S4 is a consequence of theconstruction described in Section 3.After having described the conditions of how nodesare assigned ranks and how this forces structure onthe trees we now turn to consider how to handle theviolating nodes | which together with the two rootscould be potential minimum elements. To keep trackof the violating nodes we associate to each node x twosubsets V (x) and W (x) of nodes larger than x from thetrees T1 and T2. That is the nodes in V (x) and W (x)are good with respect to x. We do not require that ify 2 V (x) [W (x) that x and y belong to the same Titree. But we require that a node y belongs to at mostone V or one W set. Also we do not require that ify 2 V (x) [W (x) then r(y) � r(x).The V sets and the W sets are all stored as doublylinked lists. Violations added to a V set are alwaysadded to the front of the list. Violations added to aW set are always added in such a way that violationsof the same rank are adjacent. So if we have to add aviolation to W (x) and there is already a node in W (x)of the same rank, then we insert the new node adjacentto this node. Otherwise we just insert the new node atthe front of W (x).We implement the V (x) and W (x) sets by lettingeach tree node x have four additional pointers: One to

Worst-Case E�cient Priority Queues 3the �rst node in V (x), one to the �rst node in W (x),and two to the next and previous node in the violationlist that x belongs to | provided x is contained in aviolation list. Each time we add a node to a violation setwe always �rst remove the node from the set it possiblybelonged to.Intuitively V (x)'s purpose is to contain violatingnodes of large rank. Whereas W (x)'s purpose is tocontain violating nodes of small rank. If a new violatingnode is created which has large rank, i.e. r(x) � r(t1),we add the violation to V (t1), otherwise we add theviolation to W (t1). To be able to add a node to W (t1)at the correct position we need to know if a node alreadyexists in W (t1) of the same rank. In case there is weneed to know such an element. For this purpose wemaintain an extendible array1 of size r(t1) of pointersto nodes in W (t1) of each possible rank. If no nodeexists of a given rank in W (t1) the corresponding entryin the array is null.The structure on the V and W sets is enforced bythe following invariants O1{O5. We let wi(x) denotethe number of nodes in W (x) of rank i.O1 : t1 = minT1 [T2,O2 : if y 2 V (x) [W (x), then y � x,O3 : if y < p(y), then an x 6= y exists such thaty 2 V (x) [W (x),O4 : wi(x) � 6,O5 : if V (x) = (yjV (x)j; : : : ; y2; y1), thenr(yi) � b(i � 1)=�c for i = 1; 2; : : :; jV (x)jwhere � is a constant.O1 guarantees that the minimumelement containedin a priority queue always is the root of T1. O2 saysthat the elements are heap ordered with respect tomembership of the V and W sets. O3 says that allviolating nodes belong to a V or W set. Because allnodes have rank O(logn) invariants O4 and O5 implythat the sizes of all V and W sets are O(logn). Noticethat if we remove an element from a V or W set, thenthe invariants O4 and O5 cannot become violated.That invariants O4 and O5 are stated quite di�er-ently is because the V and W sets have very di�erentroles in the construction. Recall that the V sets takecare of large violations, i.e. violations that have ranklarger than r(t1) when they are created. The constant1An extendible array is an array of which the length can beincreased by one in worst case constant time. It is folklore thatextendible arrays can be obtained from ordinary arrays by arraydoubling and incremental copying. In the rest of this paper allarrays are extendible arrays.

� is the number of large violations that can be createdbetween two increases in the rank of t1.For the roots t1 and t2 we strengthen the invariantssuch that R1{R3 also should be satis�ed.R1 : ni(tj) 2 f2; 3; : : :; 7g for i = 0; 1; : : : ; r(tj)� 1,R2 : jV (t1)j � �r(t1),R3 : if y 2W (t1) then r(y) < r(t1).Invariant R1 guarantees that there are at least twosons of each rank at both roots. This property isimportant for the transformations to be described inSection 4.2 and Section 4.3. Invariant R2 together withinvariant O5 guarantee that if we can increase the rankof t1 by one we can create � new large violations and addthem to V (t1) without violating invariant O5. InvariantR3 says that all violations in W (t1) have to be small.The maintenance of R1 and O4 turns out to benontrivial but they can all be maintained by applyingthe same idea. To unify this idea we introduce theconcept of a guide to be described in Section 3.The main idea behind the construction is the fol-lowing captured by the DecreaseKey operation. Thedetails follow in Section 4. Each time we perform aDecreaseKey operation we just add the new violat-ing node to one of the sets V (t1) or W (t1). To avoidhaving too many violations stored at the root of T1 weincrementally do two di�erent kinds of transformations.The �rst transformation moves the sons of t2 to t1 suchthat the rank of t1 increases. The second transformationreduces the number of violations in W (t1) by replacingtwo violations of rank k by at most one violation of rankk+ 1. These transformations are performed to reestab-lish invariants R2 and O4.3 GuidesIn this section we describe the guide data structurethat helps us maintaining the invariants R1 and O4 onni(t1); ni(t2) and wi(t1). The relationship between theabstract sequences of variables in this section and thesons and the violations stored at the roots are explainedin Section 4.The problem can informally be described as follows.Assume we have to maintain a sequence of integervariables xk; xk�1; : : : ; x1 (all sequences in this sectiongoes from right to left) and we want to satisfy theinvariant that all xi � T for some threshold T . On thesequence we can only perform Reduce(i) operationswhich decrease xi by at least two and increase xi+1 byat most one. The xis can be forced to increase anddecrease by one, but for each change in an xi we areallowed to do O(1) Reduce operations to prevent anyxi from exceeding T . The guide's job is to tell us whichoperations to perform.

4 Gerth St�lting Brodalx1x2x3� � �x9� � �x16 0120102021101121r r r r r r r r r r r r r r r r3?79?15?? ? ? ? ? ? ?� � � � � � � �� � � � �� �6 Figure 1: The guide data structure.This problem also arises implicitly in [1, 2, 8, 9].But the solution presented in [8] requires time �(k)to �nd which Reduce operations to perform whereasthe problems in the other papers are simpler becauseonly x1 can be forced to increase and decrease. Thedata structure we present can �nd which operations toperform in worst case time O(1) for the general problem.To make the guide's knowledge about the xis assmall as possible we reveal to the guide another sequencex0k; : : : ; x01 such that xi � x0i 2 fT � 2; T � 1; Tg (thischoice is a consequence of the construction we describebelow). As long as all xi � x0i we do not require helpfrom the guide. First when an xi = x0i is forced tobecome xi + 1 we require help from the guide. In thefollowing we assume w.l.o.g. that the threshold T is twosuch that x0i 2 f0; 1; 2g and that Reduce(i) decreasesx0i by two and increases x0i+1 by one.The data structure maintained by the guide parti-tions the sequence x0k; : : : ; x01 into blocks of consecutivex0is of the form 2; 1; 1; : : :; 1; 0 where the number of onesis allowed to be zero. The guide maintains the invariantthat all x0is not belonging to a block of the above typehave value either zero or one. An example of a sequencesatisfying this is the following where blocks are shownby underlining the subsequences.1; 2; 1; 1; 0; 1; 1; 2; 0 ; 2; 0 ; 1; 0; 2; 1; 0:The guide stores the values of the variables x0i inone array and uses another array to handle the blocks.The second array contains pointers to memory cellswhich contain the index of an xi or the value ?. Allvariables in the same block point to the same cell andthis cell contains the index of the leftmost variable inthe block. Variables not belonging to a block point toa cell containing ?. A data structure for the previousexample is illustrated in Figure 1. Notice that severalvariables can share a memory cell containing ?. Thisdata structure has two very important properties:1. Given a variable we can in worst case time O(1)�nd the leftmost variable in the block, and2. we can in worst case time O(1) destroy a given

block, i.e. let all nodes in the block belong to noblock, by simply assigning ? to the block's memorycell.When an x0i is forced to increase the guide can inworst case time O(1) decide which Reduce operationsto perform. We only show how to handle one nontrivialcase, all other cases are similar. Assume that there aretwo blocks of variables adjacent to each other and thatthe leftmost x0i = 1 in the rightmost block has to beincreased. Then the following transformations have tobe performed:2; 1; 1; 0 ; 2; 1; 1; 1;0> 2; 1; 1; 0 ; 2; 2; 1; 1;0 increment x0i;> 2; 1; 1; 1 ; 0; 2; 1; 1;0 Reduce;> 2; 1; 1; 1 ; 1; 0; 1; 1;0 Reduce;> 2; 1; 1; 1; 1;0 ; 1; 1; 0 reestablish blocks:To reestablish the blocks the two pointers of the newvariables in the leftmost block are set to point to theleftmost block's memory cell and the rightmost block'smemory cell is assigned the value ?.In the case described above only two Reduceoperations were required and these were performed onx0js where j � i. This is true for all cases.We conclude this section with two remarks on theconstruction. By using extendible arrays the sequenceof variables can be extended by a new xk+1 equal to zeroor one in worst case time O(1). If we add a referencecounter to each memory cell we can reuse the memorycells such that the total number of needed memory cellsis at most k.4 OperationsIn this section we describe how to implement the di�er-ent priority queue operations. We begin by describingsome transformations on the trees which are essential tothe operations to be implemented.4.1 Linking and delinking trees.The fundamentaloperation on the trees is the linking of trees. Assumethat we have three nodes x1; x2 and x3 of equal rank andnone of them is a root ti. By doing two comparisons wecan �nd the minimum. Assume w.l.o.g. that x1 is theminimum. We can now make x2 and x3 the leftmostsons of x1 and increase the rank of x1 by one. Neitherx2 or x3 become violating nodes and x1 still satis�es allthe invariants S1{S5 and O1{O5.The delinking of a tree rooted at node x is a littlebit more tricky. If x has exactly two or three sons ofrank r(x) � 1, then these two or three sons can be cuto� and x gets the rank of the largest ranked son plusone. From S4 it follows that x still satis�es S3 and it

Worst-Case E�cient Priority Queues 5follows that S1{S5 and O1{O5 are still satis�ed. In thecase where x has at least four sons of rank r(x)� 1 twoof these sons are simply cut o�. Because x still has atleast two sons of rank r(x) � 1 the invariants are stillsatis�ed.It follows that the delinking of a tree of rank kalways results in two or three trees of rank k � 1 andone additional tree of rank at most k (the tree can beof any rank between zero and k).4.2 Maintaining the sons of a root. We nowdescribe how to add sons below a root and how to cuto� sons at a root while keeping R1 satis�ed. For thispurpose we require four guides, two for each of the rootst1 and t2. We only sketch the situation at t1 becausethe construction for t2 is analogous.To have constant time access to the sons of t1 wemaintain an extendible array of pointers that for eachrank i = 0; : : : ; r(t1) � 1 has a pointer to a son of t1of rank i. Because of R1 such sons are guaranteed toexist. This enables us to link and delink sons of rank i inworst case time O(1) for an arbitrary i. One guide takescare of that ni(t1) � 7 and the other of that ni(t1) � 2for i = 0; : : : ; r(t1) � 3 (to maintain a lower bound ona sequence of variables is equivalent to maintaining anupper bound on the negated sequence). The sons of t1of rank r(t1)�1 and r(t1)�2 are treated separately in astraight forward way such that there always are between2 and 7 sons of these ranks. This is necessary becauseof the dependency between the guide maintaining theupper bound on ni(t1) and the guide maintaining thelower bound on ni(t1). The \marked" variables thatwe reveal to the guide that maintains the upper boundon ni(t1) have values f5; 6; 7g and to the guide thatmaintains the lower bound have values f4; 3; 2g.If we add a new son at t1 of rank i we tell the guidemaintaining the upper bound that ni(t1) is forced toincrease by one (this assumes i < r(t1) � 2). Then theguide then tells us where to do at most two Reduceoperations. The Reduce(i) operation in this contextcorresponds to the linking of three trees of rank i. Thisdecreases ni(t1) by three and increases ni+1(t1) by one.We only do the linking when ni(t1) = 7 so that the guidemaintaining the lower bound on ni(t1) will be una�ected(this implies a minor change in the guide). If this resultsin too many sons of rank r(t1) � 2 or r(t1)� 1 we linksome of these sons and possibly increase the rank of t1.If the rank of t1 increases we also have to increase thedomain of the two guides.To cut o� a son is similar, but now the Reduceoperation corresponds to the delinking of a tree. Theadditional tree from the delinking transformation thatcan have various ranks is treated separately after the

delinking. We just add it below t1 as described above.At t2 the situation is nearly the same. The majordi�erence is that because we knew that t1 was thesmallest element the linking and delinking of sons of t1would not create new violations. This is not true at t2.The linking of sons never creates new violations but thedelinking of sons at t2 can create three new violations.We will see in Section 4.4 that it turns out that we onlycut o� sons of t2 which have rank larger than r(t1). Thetree \left over" by a delinking is made a son of t1 if ithas rank less than r(t1). Otherwise it is made a sonof t2. The new violations which have rank larger thanr(t1) are added to V (t1). To satisfy O5 and R2 we justhave to guarantee that the rank of t1 will be increasedand that � in R2 and O5 is chosen large enough.4.3 Violation reducing transformations.We nowdescribe the most essential transformation on the trees.The transformation reduces the number of potentialviolations Sy2T1[T2 V (y) [W (y) in the tree by at leastone.Assume we have two potential violations x1 and x2of equal rank k < r(t1) which are not roots or sonsof a root. First we check that both x1 and x2 areviolating nodes. If one of the nodes already is a goodnode we remove it from the corresponding violation set.Otherwise we proceed as described below.Because of S4 we know that both x1 and x2 have atleast one brother. If x1 and x2 are not brothers assumew.l.o.g. that p(x1) � p(x2) and swap the subtrees rootedat x1 and at a brother of x2. The number of violationscan only decrease by doing this swap. We can noww.l.o.g. assume that x1 and x2 are brothers and bothsons of node y.If x1 has more than one brother of rank k we justcut o� x1 and make it a good son of t1 as describedin Section 4.2. Because x1 had at least two brothers ofrank k, S4 is still satis�ed at y.In case x1 and x2 are the only brothers of rank kand r(y) > k+1 we just cut o� both x1 and x2 and makethem new good sons of t1 as described in Section 4.2.Because of invariant S4 we are forced to cut o� bothsons.The only case that remains to be considered iswhen x1 and x2 are the only sons of rank k and thatr(y) = k + 1. In this case we cut o� x1, x2 and y. Thenew rank of y is uniquely given by one plus the rank ofits new leftmost son. We replace y by a son of t1 of rankk + 1 which can be cut o� as described in Section 4.2.If y was a son of t1 we only cut o� y. If the replacementfor y becomes a violating node of rank k + 1 we add itto W (t1). Finally, x1, x2 and y are made good sons oft1 as described in Section 4.2.

6 Gerth St�lting BrodalAbove it is important that the node y is replacedby is not an ancestor of y, because if y was replaced bysuch a node a cycle among the parent pointers wouldbe created. Invariant S2 guarantees that this cannothappen.4.4 Avoiding too many violations. We now de-scribe how to avoid too many violations. The only vi-olation sets we add violations to are V (t1) and W (t1).Violations of rank larger than r(t1) are added to V (t1)and otherwise they are added to W (t1). The violationsin W (t1) are controlled by a guide. This guide guaran-tees that wi(t1) � 6. We maintained a single array sowe could access the violating nodes in W (t1) by theirrank.If we add a violation to W (t1) the guide tellsus for which ranks we should do violation reducingtransformations as described in the previous section.We only do the transformation if there are exactly sixviolations of the given rank and that there is at leasttwo violating nodes which are not sons of t2. If thereare more than four violations that are sons of t2 we cutthe additional violations o� and links them below t1.This makes these nodes good and does not a�ect theguides maintaining the sons at t2.For each priority queue operation that is performedwe increase the rank of t1 by at least one by movinga constant number of sons from t2 to t1 | providedT2 6= ;. By increasing the rank of t1 by one we cana�ord creating � new violations of rank larger than r(t1)by invariant O5 and we can just add the violations tothe list V (t1). If T2 6= ; and r(t2) � r(t1) + 2 we justcut of the largest sons of t2 and link them below t1 and�nally add t2 below t1. This will satisfy the invariants.Otherwise we cut o� a son of t2 of rank r(t1) + 2 anddelink this son and add the resulting trees below t1 suchthat the rank of t1 increases by at least one. By choosing� large enough the invariants will become reestablished.If T2 is empty we cannot increase the rank t1, butthis also implies that t1 is the node of maximum rankso no large violations can be created and R2 cannotbecome violated.4.5 Priority queue operations. In the following wedescribe how to implement the di�erent priority queueoperations such that the invariants from Section 2 aremaintained.� MakeQueue is trivial. We return a pair of emptytrees.� FindMin(Q) returns t1.� Insert(Q; e) is a special case ofMeld where Q2 isa priority queue only containing one element.

� Meld(Q1; Q2) involves at most four trees; two foreach queue. The tree having the new minimumelement as root becomes the new T1 tree. Thistree was either the T1 tree of Q1 or of Q2. If thistree is the tree of maximum rank we just add theother trees below this tree as described previously.In this case no violating node is created so notransformation is done on the violating nodes.Otherwise the tree of maximum rank becomes thenew T2 tree and the remaining trees are addedbelow this node as described in Section 4.2, possiblydelinking the new sons once if they have the samerank as t2. The violations created by this aretreated as described in Section 4.4. The guides andarrays used at the old roots that now are linkedbelow the new t2 node we just discard.� DecreaseKey(Q; e; e0) replaces the element of eby e0 (e0 � e). If e0 is less than t1 we swapthe elements in the two nodes. If e0 is a goodnode we stop, otherwise we proceed as describedin Section 4.4 to avoid having too many violationsstored at t1.� DeleteMin(Q) is allowed to take worst case timeO(logn). First T2 is made empty by moving allsons of T2 to T1 and making the root t2 a rankzero son of t1. Then t1 is deleted. This gives us atmost O(logn) independent trees. The minimumelement is then found by looking at the sets Vand W of the old root of T1 and all the roots ofthe independent trees. If the minimum element isnot a root we swap it with one of the independenttrees of equal rank. This at most creates one newviolation. By making the independent trees sons ofthe new minimumelement and performing O(logn)linking and delinking operations on these sons wecan reestablish S1{S5 and R1 and R3. By mergingthe V andW sets at the root to one set and mergingthe old minimum element's V and W sets withthe set we get one new set of violations of sizeO(logn). Possibly we also have to add the singleviolation created by the swapping. By doing atmost O(logn) violation reducing transformationsas described previously we can reduce the set tocontain at most one violation of each rank. Wemake the resulting set the new W set of thenew root and let the corresponding V set beempty. This implies that O1{O5 and R2 are beingreestablished. The guides involved are initiatedaccording to the new situation at the root of T1.� Delete(Q; e). If we let �1 denote the small-est possible element, then Delete can be imple-mented as DecreaseKey(Q; e;�1) followed byDeleteMin(Q).

Worst-Case E�cient Priority Queues 75 Implementation detailsIn this section we summarize the required details of ournew data structure.Each node we represent by a record having thefollowing �elds.� The element associated with the node,� the rank of the node,� pointers to the node's left and right brothers,� a pointer to the father node,� a pointer to the leftmost son,� pointers to the �rst node in the node's V and Wsets, and� pointers to the next and the previous node inthe violation list that the node belongs to. The�rst node in a violation list V (x) or W (x) has itsprevious violation pointer pointing to x.In addition to the above nodes we maintain thefollowing three extendible arrays:� An array of pointers to sons of t1 of rank i =0; : : : ; r(t1) � 1,� a similar array for t2, and� an array of pointers to nodes in W (t1) of ranki = 0; : : : ; r(t1) � 1 (if no node in W (t1) exist ofa given rank we let the corresponding pointer benull).Finally we have �ve guides: Three to maintain theupper bounds on ni(t1); ni(t2) and wi(t1) and two tomaintain the lower bounds on ni(t1) and ni(t2).6 ConclusionFrom the construction presented in the previous sectionswe conclude that:Theorem 6.1. An implementation of priority que-ues exists that supports the operations MakeQueue,FindMin, Insert, Meld and DecreaseKey in worstcase time O(1) and DeleteMin and Delete in worstcase time O(logn). The space required is linear in thenumber of elements contained in the priority queues.The data structure presented is quite complicated.An important issue for further work is to simplify theconstruction to make it applicable in practice. It wouldalso be interesting to see if it is possible to remove therequirement for arrays from the construction.AcknowledgementThe author thanks Rolf Fagerberg for the long discus-sions that lead to the results presented in the paper.References[1] Gerth St�lting Brodal. Fast meldable priority queues.In Proc. 4th Workshop on Algorithms and Data Struc-tures (WADS), volume 955 of Lecture Notes in Com-

puter Science, pages 282{290. Springer Verlag, Berlin,1995.[2] Svante Carlsson, Patricio V. Poblete, and J. IanMunro. An implicit binomial queue with constantinsertion time. In Proc. 1st Scandinavian Workshopon Algorithm Theory (SWAT), volume 318 of LectureNotes in Computer Science, pages 1{13. Springer Ver-lag, Berlin, 1988.[3] James R. Driscoll, Harold N. Gabow, Ruth Shrairman,and Robert E. Tarjan. Relaxed heaps: An alternativeto �bonacci heaps with applications to parallel com-putation. Communications of the ACM, 31(11):1343{1354, 1988.[4] Rolf Fagerberg. A generalization of binomial queues.Technical Report IMADA-94-35, Odense University,1994. To appear in Information Processing Letters.[5] Robert W. Floyd. Algorithm 245: Treesort3. Commu-nications of the ACM, 7(12):701, 1964.[6] Michael L. Fredman, Robert Sedgewick, Daniel D.Sleator, and Robert E. Tarjan. The pairing heap: Anew form of self{adjusting heap. Algorithmica, 1:111{129, 1986.[7] Michael L. Fredman and Robert Endre Tarjan. Fi-bonacci heaps and their uses in improved network op-timization algorithms. In Proc. 25rd Ann. Symp. onFoundations of Computer Science (FOCS), pages 338{346, 1984.[8] Leo J. Guibas, Edward M. McCreight, Michael F.Plass, and Janet R. Roberts. A new representation forlinear lists. In Proc. 9th Ann. ACM Symp. on Theoryof Computing (STOC), pages 49{60, 1977.[9] Haim Kaplan and Robert Tarjan. Persistent lists withcatenation via recursive slow-down. In Proc. 27th Ann.ACM Symp. on Theory of Computing (STOC), pages93{102, 1995.[10] Donald E. Knuth. The Art of Computer Programming,Volume III: Sorting and Searching. Addison-Wesley,Reading, MA, 1973.[11] Kurt Mehlhorn and Athanasios K. Tsakalidis. Datastructures. In J. van Leeuwen, editor, Handbook ofTheoretical Computer Science, Volume A: Algorithmsand Complexity. MIT Press/Elsevier, 1990.[12] J�org-R. Sack and Thomas Strothotte. An algorithm formerging heaps. ACTA Informatica, 22:171{186, 1985.[13] Robert Endre Tarjan. Data Structures and Net-work Algortihms. Society for Industrial and AppliedMatehmatics, Philadelphia, Pennsylvania, 1983.[14] Robert Endre Tarjan. Amortized computational com-plexity. SIAM Journal on Algebraic and DiscreteMethods, 6:306{318, 1985.[15] Jan van Leeuwen. The composition of fast priorityqueues. Technical Report RUU-CS-78-5, Departmentof Computer Science, University of Utrecht, 1978.[16] Jean Vuillemin. A data structure for manipulating pri-ority queues. Communications of the ACM, 21(4):309{315, 1978.[17] J. W. J. Williams. Algorithm 232: Heapsort. Commu-nications of the ACM, 7(6):347{348, 1964.

