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Motivation for new network monitoring algorithms

Problem: we often need to monitor network links for quantities
such as

e Elephant flows (traffic engineering, billing)

e Number of distinct flows, average flow size (queue manage-
ment)

e Flow size distribution (anomaly detection)
e Per-flow traffic volume (anomaly detection)
e Entropy of the traffic (anomaly detection)

e Other “unlikely” applications: traffic matrix estimation, P2P
routing, IP traceback



The challenge of high-speed network monitoring

e Network monitoring at high speed 1s challenging

— packets arrive every 25ns on a 40 Gbps (OC-768) link
— has to use SRAM for per-packet processing
— per-flow state too large to fit into SRAM

— traditional solution of sampling is not accurate due to the
low sampling rate dictated by the resource constraints (e.g.,

DRAM speed)



Network data streaming — a smarter solution

e Computational model: process a long stream of data (pack-
ets) in one pass using a small (yet fast) memory

e Problem to solve: need to answer some queries about the
stream at the end or continuously

e Trick: try to remember the most important information about
the stream pertinent to the queries — learn to forget unimportant
things

e Comparison with sampling: streaming peruses every piece of
data for most important information while sampling digests a
small percentage of data and absorbs all information therein.



The “hello world” data streaming problem

e Given a long stream of data (say packets) d, ds, - - -, count the
number of distinct elements (Fj) in it

e Sayina, b, c, a, ¢, b, d, a — this number is 4
e Think about trillions of packets belonging to billions of flows

e A simple algorithm: choose a hash function i with range (0,1)
o X := min(h(dy), h(dy), ...)

AN

e We can prove E|X| = 1/(Fj + 1) and then estimate F{ using
method of moments

e Then averaging hundreds of estimations of F{ up to get an ac-
curate result



e

Another solution to the same problem [Whang et al., 1990

e Initialize a bit array A of size m to all 0 and fix a hash function
h that maps data items into a number in {1,2,....m}.

e For each incoming data item x;, set A|h(x;)| to 1
e [ et my be the number of 0’s in A
e Then Fy = m X In(m/my)

— Given an arbitrary index 7, let Y; the number of elements
mapped to it and let X; be 1 when Y; = 0. Then F|X}] =
PrlY;=0]=(1 - 1/Fy))™ ~ e~ 0,

—Then E[X] = Y7, E[X;] = m x e~ ™/*0,

— By the method of moments, replace £/| X | by m, in the above

equation, we obtain the above unbiased estimator (also shown
to be MLE).



Cash register and turnstile models [[Muthukrishnan,

e The implicit state vector (varying with time ?) is the form a =<
A1y A2y euny Ay >

e Each incoming data item x; is in the form of < i(¢), ¢(t) >, in
which case a;(; is incremented by c(t)

e Data streaming algorithms help us approximate functions of a
such as Ly(@) = >, |a;|" (number of distinct elements).

e Cash register model: ¢(¢) has to be positive (often is 1 in net-
working applications)

e Turnstile model: ¢(¢) can be both positive and negative



Estimating the sample entropy of a stream [Lall et al., 2006

e Note that Y ", a; = N

e The sample entropy of a stream 1s defined to be

n

H(d@) = — 3 (a;/N) log (a,/N)

1=1

e All logarithms are base 2 and, by convention, we define 0 log 0 =
0

e We extend the previous algorithm ([Alon et al., 1999]) to esti-
mate the entropy

e Another team obtained similar results simultaneously



The concept of entropy norm

We will focus on computing the entropy norm value S = » " | a;log a;
and note that

a; a;
= =3 5l ()
= _Wl [Zailogai—ZailogN]

1

= logN—NZailogai
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so that we can compute H from S if we know the value of V.



(€, )-Approximation

An (€, d)-approximation algorithm for X is one that returns an
estimate X' with relative error more than ¢ with probability at
most 0. That is

Pr(|X — X'| > Xe) <.

For example, the user may specify ¢ = 0.05,0 = 0.01 (i.e., at
least 99% of the time the estimate is accurate to within 5% error).
These parameters affect the space usage of the algorithm, so there
1s a tradeoff of accuracy versus space.



The Algorithm

The strategy will be to sample as follows:

r =rand(1, m) c=4

and compute the following estimating variable:

X =N (clogec—(c—1)log(c—1)).

can be viewed as f’(x)|,—. where f(z) = xlogx



Algorithm Analysis

This estimator X = m (clogc — (¢ — 1)log (¢ — 1)) is an unbi-
ased estimator of S since

BIX) = 233 (logs— (- Dlog (i~ 1)

i=1 j=1
n

— Z a; log a;

1=1

= 5.



Algorithm Analysis, contd.

Next, we bound the variance of X:

Var(X) = E(XQ) - B(X)* < B(X?)
_ ZZ (jlogj— (j —1)log (j — 1))7]

1= 1] 2
< NZZ 2log 7)* <4NZazlog a;

1=1 j=2
< 4N log N(Z a;loga;) < 4(2 a;log a;) log N(Z a;log a;)
= 45%1og N,

assuming that, on average, each item appears in the stream at least
twice.



Algorithm contd.

If we compute s; = (32log V) /€* such estimators and compute
their average Y, then by Chebyschev’s inequality we have:

Var(Y)
Pr(lY =S| >e€S) < Y
4log N S? ~ 4log N
o 816252 B 8162
1
< —,
— 8

If we repeat this with sy = 2log (1/4) groups and take their me-
dian, by a Chernoff bound we get more than €S error with proba-
bility at most 0.

Hence, the median of averages is an (€, §)-approximation.



The Sieving Algorithm

e KEY IDEA: Separating out the elephants decreases the vari-
ance, and hence the space usage, of the previous algorithm.

e Each packet 1s now sampled with some fixed probability p.

e If a particular item 1s sampled two or more times, it 1s consid-
ered an elephant and its exact count 1s estimated.

e For all items that are not elephants we use the previous algo-
rithm.

e The entropy is estimated by adding the contribution from the
elephants (from their estimated counts) and the mice (using the
earlier algorithm).



Estimating the k;;, moments [[Alon et al., 1999

e Problem statement (cash register model with increments of size

1): approximating F, = > " aF

e Given a stream of data x1, zo, ..., , the algorithm samples an
item uniformly randomly at s; X s9 locations like before

e If it 1s already in the hash table, increment the corresponding
counter, otherwise add a new entry < a;, 1 > to it

e After the measurement period, for each record < a;, ¢; >, ob-
tain an estimate as c* - ¢/ ! (f/(x)|,—. where f(z) = z")

e Median of the means of these s; X sy estimates like before

e Our algorithm is inspired by this one



Tug-of-War sketch for estimating L, norms [Alon et al., 1999

e Fix an explicit set V' = {vy,v9, ..., v} of h = O(N?) vectors
of length NV with +1 and -1 entries

e These vectors are 4-wise independent, that is, for every four
distinct indices i1, ..., i, and every choice of €1, ..., e, € {—1,+1},
exactly 1/16 of the vectors in V' take these values — they can be
generated using BCH codes using a small seed

e randomly choose v =< €1,€9,...,exy > from V, and let X
be square of the dot product of v and the stream, i.e., X =

(Zi\; € X Ty)°.

e Then take the median of a bunch of such X's



Elephant detection algorithms

e Problem: finding all the elements whose frequency is over 6 /N
e There are three types of solutions:

— Those based on “intelligent sampling”

— Those based on a sketch that provides a “reading” on the ap-
proximate size of the flow that an incoming packet belongs
to, in combination with a heap (to keep the largest ones).

— The hybrid of them

e We will not talk about change detection, as it can be viewed as
a variant of the elephant detection problem



Karp-Shenker-Papadimitriou Algorithm

e A deterministic algorithm to guarantee that all items whose fre-
quency count is over N are reported:
1. maintain a set < e, f >
2. foreach incoming data x;
3. search/increment/create an item in the set
4.  if the set has more than 1/6 items then
5. decrement the count of each item in the set by 1,
6. remove all zero-count items from the set
7. Output all the survivors at the end

e Not suitable for networking applications



Count-Min or Cormode-Muthukrishnan sketch

= +C¢

hl ] = +Ct

. // | =
1, —r T ]
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e The count is simply the minimum of all the counts

e One can answer several different kinds of queries from the
sketch (e.g., point estimation, range query, heavy hitter, etc.

e It is a randomized algorithm (with the use of hash functions)



Elephant detection algorithm with the CM sketch

e maintain a heap 1 of of “small” size

1. for each incoming data item x;

2. getits approximate count f from the CM sketch
3. if f > 6Ot then

4. increment and/or add x; to H

5. delete H.man() if it falls under 0t
6. output all above-threshold items from H

e Suitable for networking applications



Charikar-Chen-(Farach-Colton) sketch

e [t 1s a randomized algorithm (with the use of hash functions)

e Setting: An m X b counter array C, hash functions Aq, ..., A,
that map data items to {1,...,b} and s, ..., s,,, that map data
items to {—1, +1}.

e Add(x;): compute i; = hj(x), 7 = 1,...,m, and then incre-
ment C[j][i] by s ().

e Estimate(x;): return the median; <<, {C[j][¢;] x hj(z:)}

e Suitable for networking applications



Sticky sampling algorithm [Manku and Motwani, 2002

e sample (and hold) initially with probability 1 for first 2¢ ele-
ments

e sample with probability 1/2 for the next 2¢ elements and re-
sample the first 2¢ elements

e sample with probability 1/4 for the next 4¢ elements, resample,
and so on ...

e A little injustice to describe it this way as it is earlier than
[Estan and Varghese, 2002

e Not suitable for networking applications due to the need to re-
sample

 S—




Lossy counting algorithm [Manku and Motwani, 2002

e divide the stream of length /V into buckets of size w = [1/0]
each

e maintain a set D of entries in the form < e, f, A >

1. foreach incoming data item x;
2. b:=[1]

3. ifx;isin D then increment f accordingly
4. elseaddentry < z;,1,0—1>to D

5. if t 1s divisible by w then

6. delete all items e whose f + A < b

7. return all items whose f > (0 — ¢)N.

e Not suitable for networking applications



Sample-and-hold [Estan and Varghese, 2002

ed

e maintain a set D of entries in the form < e, f >

1. foreach incoming data item x;

2. ifitisin D then increment f

3. elseinsert a new entry to D with probability b« 1/(/N8)
4. return all items in D with high frequencies



Multistage filter [Estan and Varghese, 2002

e

e maintain multiple arrays of counters C4, CY, ..., C,, of size b
and a set D of entries < e, f >, and let hq, ho, ..., h,, be hash
functions that map data items to {1, 2, ..., b}.

1. for each incoming data item x;

2. increment C;|h;(z)], ¢ = 1,...,m by 1 if possible
3.  if these counters reach value M AX

4. then insert/increment x; into D

5. Output all items with count at least N x § — M AX

e Conservative update: only increment the minimum(s)

e Serial version 1s more memory efficient, but increases delay



Estimating ; norm [Indyk, 2006]]

e Recall the turnstile model (increments can be both positive and
negative)

e [, norm is exactly L;(d@) = )., |a;| and is more general than
frequency moments (increments are 1 each)

e Algorithm to estimate the L; norm:

1. prescribe independent hash functions A, ..., h,, that maps
a data item into a Cauchy random variable distributed as

f(x) = %T{E? and 1nitialize real-valued registers 7, ..., p, to
0.0

2. for each incoming data item z; =< i(t), ¢;(t) >
3. obtain vy = hy(i(t)), ..., U = hy(i(1))

4. increment ry by vy, 9 by v9, ..., and r,, by v,,
5. return median(|r|, |72, ..., |Tin|)



Why this algorithm works [Indyk, 2006]]

e Property of Cauchy distribution: if X;, X, X are standard

Cauchy RV’s, and X and X are independent, then a X; 4+ 0.X5
has the same distribution as (|a| + [b|) X

e Given the actual state vector as < ay,as,...,a, >, after the
execution of this above algorithm, we get in each r; a random
variable of the following format a; X X|+ a9 X Xo+ ... +a, X
X, >, which has the same distribution as (>, |a;|) X

e Since median(|X|) = 1 (or Fi;*(0.75) = 1), the estimator sim-
ply uses the sample median to approximate the distribution me-
dian

e Why not “method of moments”?



The theory of stable distributions

e The existence of p-stable distributions (S(p), 0 < a < 2)is
discovered by Paul Levy about 100 years ago (p replaced with
« 1n most of the mathematical literature).

e Property of p-stable distribution: let X, ..., X,, denote mutu-
ally independent random variables that have distribution S(p),
then a, X| + asXo + ... +a, X, and (a} +ab + ... +aP)'/P X are
1dentically distributed.

e Cauchy is 1-stable as shown above and Gaussian (f(x) = ﬁe_ﬂ/ )
is 2-stable



The theory of stable distributions, contd.

Although analytical expressions for the probability density func-
tion of stable distributions do not exist (except for p = 0.5, 1, 2),
random variables with such distributions can be generated through
the following formula:

P (p0) (cos (6(1 — p))) 1/p—1

)

~ cosl/rg —Inr

where 6 is chosen uniformly in [—7 /2, 7/2] and r is chosen uni-
formly in |0, 1] [Chambers et al., 1976].




Fourier transforms of stable distributions

e Each S(p) and correspondingly f,(z) can be uniquely charac-
terized by its characteristic function as

Ele"™] = /OO Fo(@)(cos (tx) + i -sin (tz)) = e 1. (1)

e It is not hard to verify that the fourier inverse transform of the
above 1s a distribution function (per Polya’s criteria)

e Verify the stableness property of S(p):
E[eit(a1X1+a2X2+...—I—aan)]

_ E[eztale] ] E[eztang] S E[eztaan]
artl? laotl? —laot|P

_ et =laatl? o —lagt]

_ €—|(a§+a§+...+ag)1/pt\p

E[eit((azf+a]2)+...+aﬁ)1/pX)] .



Estimating L, norms for 0 < p <2

e [, norm is defined as L, (@) = (3., |a;|?)'/?, which is equiv-
alent to £}, (py, moment) under the cash register model (not
equivalent under the turnstile model)

e Simply modify the L; algorithm by changing the output of
these hash functions hy, ..., h,, from Cauchy (i.e., S(1)) to S(p)

e Moments of .S(p) may not exist but median estimator will work
when m 1s reasonably large (say > 5).

e Indyk’s algorithms focus on reducing space complexity and

some of these tricks may not be relevant to networking appli-
cations



Data Streaming Algorithm for Estimating Flow Size Distribu-
tion [[Kumar et al., 2004

e Problem: To estimate the probability distribution of flow sizes.
In other words, for each positive integer ¢, estimate n;, the num-
ber of flows of size 1.

e Applications: Traffic characterization and engineering, net-
work billing/accounting, anomaly detection, etc.

e Importance: The mother of many other flow statistics such as
average flow size (first moment) and flow entropy

e Definition of a flow: All packets with the same flow-label.
The flow-label can be defined as any combination of fields
from the IP header, e.g., <Source IP, source Port, Dest. IP,
Dest. Port, Protocol>.



Architecture of our Solution — Lossy data structure

e Maintain an array of counters in fast memory (SRAM).

e For each packet, a counter is chosen via hashing, and incre-

mented.
e No attempt to detect or resolve collisions.

e Each 64-bit counter only uses 4-bit of SRAM (due to

e Data collection is lossy (erroneous), but very fast.

/hao et al., 2006b




Counting Sketch: Array of counters

Array of
Counters

Processor




Counting Sketch: Array of counters

Array of
Counters

Packet arrival

Processor




Counting Sketch: Array of counters
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Counting Sketch: Array of counters
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Counting Sketch: Array of counters
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Counting Sketch: Array of counters
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The shape of the “Counter Value Distribution”
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The distribution of flow sizes and raw counter values (both z and
y axes are 1n log-scale). m = number of counters.



Estimating n and n;

e Let total number of counters be m.

e et the number of value-0 counters be m,

e Then n = m * In(m/my) as discussed before

e et the number of value-1 counters be 1,

e Then n| = yleﬁ/m

e Generalizing this process to estimate n9, ng, and the whole flow
size distribution will not work

e Solution: joint estimation using Expectation Maximization



Estimating the entire distribution, ¢, using EM

e Begin with a guess of the flow distribution, ¢"".

e Based on this ¢, compute the various possible ways of “split-
ting” a particular counter value and the respective probabilities
of such events.

e This allows us to compute a refined estimate of the flow distri-
bution ¢"“".

e Repeating this multiple times allows the estimate to converge
to a local maximum.

e This is an instance of Expectation maximization.



Estimating the entire flow distribution — an example

e For example, a counter value of 3 could be caused by three
events:

— 3 =3 (no hash collision);

—3=1+2 (aflow of size 1 colliding with a flow of size 2);

—3=1+1+ 1 (three flows of size 1 hashed to the same
location)

e Suppose the respective probabilities of these three events are
0.5, 0.3, and 0.2 respectively, and there are 1000 counters with
value 3.

e Then we estimate that 500, 300, and 200 counters split in the
three above ways, respectively.

e So we credit 300 * 1 + 200 * 3 =900 to nq, the count of size 1
flows, and credit 300 and 500 to ns and ns, respectively.



How to compute these probabilities

e Fix an arbitrary index ind. Let 3 be the event that f; flows of
size si, fo flows of size sy, ..., f, flows of size s, collide into
slot ind, where 1 < 51 < 59 < ... < 5, < 2, let A\; be n;/m and

A be their total.
e Then, the a priori (i.e., before observing the value v at ind)
probability that event 3 happens is

f.
oA TTe s

p(6|¢7 n) =€ i=1 W
e Let (2, be the set of all collision patterns that add up to v. Then
by Bayes’ rule, p((3|¢, n,v) = Z@Séf'ﬁ(’;lfw), where p(5|¢,n)

and p(«a|¢,n) can be computed as above




Evaluation — Before and after running the Estimation algorithm
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Sampling vs. array of counters — Web traffic.
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Sampling vs. array of counters — DNS traffic.
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Extending the work to estimating subpopulation FSD [[Kumar et al., 2005a

e Motivation: there is often a need to estimate the FSD of a sub-
population (e.g., “what is FSD of all the DNS traffic”).

e Definitions of subpopulation not known in advance and there
can be a large number of potential subpopulation.

e Our scheme can estimate the FSD of any subpopulation defined
after data collection.

e Main idea: perform both data streaming and sampling, and
then correlate these two outputs (using EM).



Streaming-guided sampling [[Kumar and Xu, 2006
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Estimating the Flow-size Distribution

Results
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Figure 1: Estimates of FSD of https flows using various data sources.



A hardware primitive for counter management [Zhao et al., 2006b

e Problem statement: To maintain a large array (say millions)
of counters that need to be incremented (by 1) in an arbitrary
fashion (i.e., Ali;] + +, Alio] + +, ...)

e Increments may happen at very high speed (say one increment
every 10ns) — has to use high-speed memory (SRAM)

e Values of some counters can be very large
e Fitting everything in an array of “long” (say 64-bit) SRAM
counters can be expensive

e Possibly lack of locality in the index sequence (i.e., 1, 29, ...) —
forget about caching




Motivations

e A key operation in many network data streaming algorithms is
to “hash and increment”

e Routers may need to keep track of many different counts (say
for different source/destination IP prefix pairs)

e To implement millions of token/leaky buckets on a router

e Extensible to other non-CS applications such as sewage man-
agement

e Our work 1s able to make 16 SRAM bits out of 1 (Alchemy of
the 21st century)



Main Idea in Previous Approaches [Shah et al., 2002 Ramabhadran and Va

small SRAM counters large DRAM counters
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Figure 2: Hybrid SRAM/DRAM counter architecture



CMA used 1n [Shah et al., 2002

e Implemented as a priority queue (fullest counter first)

e Need 28 = 8 + 20 bits per counter (when S/D 1s 12) — the theo-
retical minimum is 4

e Need pipelined hardware implementation of a heap.



CMA used in [Ramabhadran and Varghese, 2003

 S—

e SRAM counters are tagged when they are at least half full (im-
plemented as a bitmap)

e Scan the bitmap clockwise (for the next “1”) to flush (half-
full)™ SRAM counters, and pipelined hierarchical data struc-
ture to “jump to the next 1” in O(1) time

e Maintain a small priority queue to preemptively flush the SRAM
counters that rapidly become completely full

e 8 SRAM bits per counter for storage and 2 bits per counter for
the bitmap control logic, when S/D 1s 12.



Our scheme

e Our scheme only needs 4 SRAM bits when S/D 1s 12.

e Flush only when an SRAM counter 1s “completely full” (e.g.,
when the SRAM counter value changes from 15 to 16 assum-
ing 4-bit SRAM counters).

e Use a small (say hundreds of entries) SRAM FIFO buffer to
hold the indices of counters to be flushed to DRAM

e Key innovation: a simple randomized algorithm to ensure that
counters do not overflow 1n a burst large enough to overflow
the FIFO buffer, with overwhelming probability

e Our scheme 1s provably space-optimal



The randomized algorithm

e Set the 1nitial values of the SRAM counters to independent

random variables uniformly distributed in {0, 1,2, ..., 15} (i.e.,
Alt] == uniform{0,1,2,...,15}).

e Set the initial value of the corresponding DRAM counter to
the negative of the initial SRAM counter value (i.e., Bli| :=

— Afi).

e Adversaries know our randomization scheme, but not the ini-
tial values of the SRAM counters

e We prove rigorously that a small FIFO queue can ensure that
the queue overflows with very small probability



A numeric example

e One million 4-bit SRAM counters (512 KB) and 64-bit DRAM
counters with SRAM/DRAM speed difference of 12

e 300 slots (= 1 KB) in the FIFO queue for storing indices to be
flushed

o After 10! counter increments in an arbitrary fashion (like 8
hours for monitoring 40M packets per second links)

e The probability of overflowing from the FIFO queue: less than
10~'* in the worst case (MTBF is about 100 billion years) —
proven using minimax analysis and large deviation theory (in-
cluding a new tail bound theorem)



Distributed coordinated data streaming — a new paradigm

e A network of streaming nodes

e Every node 1s both a producer and a consumer of data streams

e Every node exchanges data with neighbors, “streams” the data

received, and passes it on further

e We applied this kind of data streaming to P2P

Kumar et al., 2005b

and sensor network query routing, and the RPI team has ap-

plied it to Ad-hoc networking routing.




Finding Global Icebergs over Distributed Data Sets [Zhao et al., 2006a

e An iceberg: the item whose frequency count is greater than a
certain threshold.

e A number of algorithms are proposed to find icebergs at a sin-
gle node (i.e., local icebergs).

e In many real-life applications, data sets are physically distributed
over a large number of nodes. It i1s often useful to find the
icebergs over aggregate data across all the nodes (i.e., global
icebergs).

e Global iceberg # Local iceberg

e We study the problem of finding global icebergs over distributed
nodes and propose two novel solutions.



Motivations: Some Example Applications

e Detection of distributed DoS attacks in a large-scale network

— The IP address of the victim appears over many ingress points.
It may not be a local iceberg at any ingress points since the
attacking packets may come from a large number of hosts
and Internet paths.

e Finding globally frequently accessed objects/URLs in CDNs
(e.g., Akamai) to keep tabs on current “hot spots”

e Detection of system events which happen frequently across the
network during a time interval

— These events are often the indication of some anomalies.
For example, finding DLLs which have been modified on
a large number of hosts may help detect the spread of some
unknown worms or spyware.



Problem statement

e A system or network that consists of N distributed nodes
e The data set S; at node ¢ contains a set of (x, ¢, ;) pairs.

— Assume each node has enough capacity to process incoming
data stream. Hence each node generates a list of the arriving
items and their exact frequency counts.

e The flat communication infrastructure, in which each node only
needs to communicate with a central server.

e Objective: Find {z]| sz\i , cri > T}, where ¢, ; is the frequency
count of the item « in the set S;, with the minimal communica-
tion cost.



Our solutions and their impact

e Existing solutions can be viewed as “hard-decision codes” by
finding and merging local icebergs

e We are the first to take the “soft-decision coding” approach to
this problem: encoding the “potential” of an object to become
a global iceberg, which can be decoded with overwhelming
probability if indeed a global iceberg

e Equivalent to the minimax problem of “corrupted politician™

e We offered two solution approaches (sampling-based and bloom-
filter-based)and discovered the beautiful mathematical struc-
ture underneath (discovered a new tail bound theory on the

way)
e Sprint, Thomson, and IBM are all very interested in it



Direct Measurement of Traffic Matrices [Zhao et al., 20054

e Quantify the aggregate traffic volume for every origin—destination
(OD) pair (or ingress and egress point) in a network.

e Traffic matrix has a number of applications in network man-
agement and monitoring such as

— capacity planning: forecasting future network capacity re-
quirements

— traffic engineering: optimizing OSPF weights to minimize
congestion

— reliability analysis: predicting traffic volume of network links
under planned or unexpected router/link failures



Previous Approaches

e Direct measurement [Feldmann et al., 2000]: record traffic flow-
ing through at all ingress points and combine with routing data

— storage space and processing power are limited: sampling

e Indirect inference such as [Vardi, 1996, Zhang et al., 2003]]: use
the following information to construct a highly under-constrained
linear inverse problem B = AX

— SNMP link counts B (traffic volume on each link in a net-
work)

1 1if traffic of OD flow j traverses link i,)

— routing matrix (Az',J - {O otherwise



Data streaming at each ingress/egress node

e Maintain a bitmap (initialized to all 0’s) in fast memory (SRAM)

e Upon each packet arrival, input the invariant packet content to
a hash function; choose the bit by hashing result and set it to 1.

— variant fields (e.g., TTL, CHECKSUM) are marked as 0’s
— adopt the equal sized bitmap and the same hash function

e No attempt to detect or resolve collisions caused by hashing

e Ship the bitmap to a central server at the end of a measurement
epoch



How to Obtain the Tratfic Matrix Element 7'M ;?

e Only need the bitmap B; at node 7 and the bitmap B; at node j

for TMZ'J'.

e Let 7; denote the set of packets hashed into B;: T'M; ; = 'T; N

7).

— Linear counting algorithm [Whang et al., 1990

estimates |7}

from B, i.e., |Tj| = blog+ where b is the size of B; and U

1s the number of “0”’s in B,.
— TN = T3] + [T = [T U T5).
 |T;| and |T}| : estimate directly

 |T; U T}|: infer from the bitwise-OR of B; and B;.



Some theoretical results

e Our estimator 1s almost unbiased and we derive its approximate
variance
Var[TM; ;] = b2 + T — e/ — 5 — g — 1)
e Sampling 1s integrated into our streaming algorithm to reduce
SRAM usage

p2 b D
e The general forms of the estimator and variance for the inter-

section of £ > 2 sets from the corresponding bitmaps is derived
in [Zhao et al., 2005b].

L b X X(1 -
VCLT[TMZ',]‘] ((egp )2(5 — 6)2(5> _|_€)§)p o _p . 1) e ( p)




Pros and Cons

e Pros
— multiple times better than the sampling scheme given the
same amount of data generated.

— for estimating 7'M ;, only the bitmaps from nodes ¢ and j
are needed.

* support submatrix estimation using minimal amount of in-
formation

x allow for incremental deployment
e Cons

— need some extra hardware addition (hardwired hash function
and SRAM)

— only support estimation in packets (not in bytes)
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