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Motivation for new network monitoring algorithms

Problem: we often need to monitor network links for quantities
such as

• Elephant flows (traffic engineering, billing)

• Number of distinct flows, average flow size (queue manage-
ment)

• Flow size distribution (anomaly detection)

• Per-flow traffic volume (anomaly detection)

• Entropy of the traffic (anomaly detection)

• Other “unlikely” applications: traffic matrix estimation, P2P
routing, IP traceback
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The challenge of high-speed network monitoring

• Network monitoring at high speed is challenging

– packets arrive every 25ns on a 40 Gbps (OC-768) link
– has to use SRAM for per-packet processing
– per-flow state too large to fit into SRAM
– traditional solution of sampling is not accurate due to the

low sampling rate dictated by the resource constraints (e.g.,
DRAM speed)
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Network data streaming – a smarter solution

• Computational model: process a long stream of data (pack-
ets) in one pass using a small (yet fast) memory

• Problem to solve: need to answer some queries about the
stream at the end or continuously

• Trick: try to remember the most important information about
the stream pertinent to the queries – learn to forget unimportant
things

• Comparison with sampling: streaming peruses every piece of
data for most important information while sampling digests a
small percentage of data and absorbs all information therein.
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The “hello world” data streaming problem

• Given a long stream of data (say packets) d1, d2, · · · , count the
number of distinct elements (F0) in it

• Say in a, b, c, a, c, b, d, a – this number is 4

• Think about trillions of packets belonging to billions of flows

• A simple algorithm: choose a hash function h with range (0,1)

• X̂ := min(h(d1), h(d2), ...)

•We can prove E[X̂ ] = 1/(F0 + 1) and then estimate F0 using
method of moments

• Then averaging hundreds of estimations of F0 up to get an ac-
curate result
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Another solution to the same problem [Whang et al., 1990]

• Initialize a bit array A of size m to all 0 and fix a hash function
h that maps data items into a number in {1, 2, ...,m}.
• For each incoming data item xt, set A[h(xt)] to 1

• Let m0 be the number of 0’s in A

• Then F̂0 = m× ln(m/m0)

– Given an arbitrary index i, let Yi the number of elements
mapped to it and let Xi be 1 when Yi = 0. Then E[Xi] =
Pr[Yi = 0] = (1− 1/F0)m ≈ e−m/F0.

– Then E[X ] =
∑m

i=1E[Xi] ≈ m× e−m/F0.
– By the method of moments, replaceE[X ] bym0 in the above

equation, we obtain the above unbiased estimator (also shown
to be MLE).
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Cash register and turnstile models [Muthukrishnan, ]

• The implicit state vector (varying with time t) is the form~a =<
a1, a2, ..., an >

• Each incoming data item xt is in the form of < i(t), c(t) >, in
which case ai(t) is incremented by c(t)

• Data streaming algorithms help us approximate functions of ~a
such as L0(~a) =

∑n
i=0 |ai|0 (number of distinct elements).

• Cash register model: c(t) has to be positive (often is 1 in net-
working applications)

• Turnstile model: c(t) can be both positive and negative
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Estimating the sample entropy of a stream [Lall et al., 2006]

• Note that
∑n

i=1 ai = N

• The sample entropy of a stream is defined to be

H(~a) ≡ −
n∑
i=1

(ai/N) log (ai/N)

• All logarithms are base 2 and, by convention, we define 0 log 0 ≡
0

•We extend the previous algorithm ([Alon et al., 1999]) to esti-
mate the entropy

• Another team obtained similar results simultaneously
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The concept of entropy norm

We will focus on computing the entropy norm value S ≡
∑n

i=1 ai log ai
and note that

H = −
n∑
i=1

ai
N

log
(ai
N

)
=
−1

N

[∑
i

ai log ai −
∑
i

ai logN

]
= logN − 1

N

∑
i

ai log ai

= logN − 1

N
S,

so that we can compute H from S if we know the value of N .
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(ε, δ)-Approximation

An (ε, δ)-approximation algorithm for X is one that returns an
estimate X ′ with relative error more than ε with probability at
most δ. That is

Pr(|X −X ′| ≥ Xε) ≤ δ.

For example, the user may specify ε = 0.05, δ = 0.01 (i.e., at
least 99% of the time the estimate is accurate to within 5% error).
These parameters affect the space usage of the algorithm, so there
is a tradeoff of accuracy versus space.
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The Algorithm

The strategy will be to sample as follows:

r = rand(1, m) c = 4

1  5  6  11   ..................................      6   .....    6    ..........      6       ............     6     ...                                                 

t = 1 t = m

and compute the following estimating variable:

X = N (c log c− (c− 1) log (c− 1)) .

can be viewed as f ′(x)|x=c where f (x) = x log x
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Algorithm Analysis

This estimator X = m (c log c− (c− 1) log (c− 1)) is an unbi-
ased estimator of S since

E[X ] =
N

N

n∑
i=1

ai∑
j=1

(j log j − (j − 1) log (j − 1))

=

n∑
i=1

ai log ai

= S.
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Algorithm Analysis, contd.

Next, we bound the variance of X:

V ar(X) = E(X2)− E(X)2 ≤ E(X2)

=
N 2

N
[

n∑
i=1

ai∑
j=2

(j log j − (j − 1) log (j − 1))2]

≤ N

n∑
i=1

ai∑
j=2

(2 log j)2 ≤ 4N

n∑
i=1

ai log2 ai

≤ 4N logN(
∑
i

ai log ai) ≤ 4(
∑
i

ai log ai) logN(
∑
i

ai log ai)

= 4S2 logN,

assuming that, on average, each item appears in the stream at least
twice.
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Algorithm contd.

If we compute s1 = (32 logN)/ε2 such estimators and compute
their average Y , then by Chebyschev’s inequality we have:

Pr(|Y − S| > εS) ≤ V ar(Y )

ε2S2

≤ 4 logNS2

s1ε2S2
=

4 logN

s1ε2

≤ 1

8
.

If we repeat this with s2 = 2 log (1/δ) groups and take their me-
dian, by a Chernoff bound we get more than εS error with proba-
bility at most δ.

Hence, the median of averages is an (ε, δ)-approximation.
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The Sieving Algorithm

• KEY IDEA: Separating out the elephants decreases the vari-
ance, and hence the space usage, of the previous algorithm.

• Each packet is now sampled with some fixed probability p.

• If a particular item is sampled two or more times, it is consid-
ered an elephant and its exact count is estimated.

• For all items that are not elephants we use the previous algo-
rithm.

• The entropy is estimated by adding the contribution from the
elephants (from their estimated counts) and the mice (using the
earlier algorithm).
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Estimating the kth moments [Alon et al., 1999]

• Problem statement (cash register model with increments of size
1): approximating Fk =

∑n
i=1 a

k
i

• Given a stream of data x1, x2, ..., xN , the algorithm samples an
item uniformly randomly at s1 × s2 locations like before

• If it is already in the hash table, increment the corresponding
counter, otherwise add a new entry < ai, 1 > to it

• After the measurement period, for each record < ai, ci >, ob-
tain an estimate as cki - ck−1

i (f ′(x)|x=c where f (x) = xk)

•Median of the means of these s1 × s2 estimates like before

• Our algorithm is inspired by this one
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Tug-of-War sketch for estimating L2 norms [Alon et al., 1999]

• Fix an explicit set V = {v1, v2, ..., vh} of h = O(N 2) vectors
of length N with +1 and -1 entries

• These vectors are 4-wise independent, that is, for every four
distinct indices i1, ..., i4 and every choice of ε1, ..., ε4 ∈ {−1,+1},
exactly 1/16 of the vectors in V take these values – they can be
generated using BCH codes using a small seed

• randomly choose v =< ε1, ε2, ..., εN > from V , and let X
be square of the dot product of v and the stream, i.e., X =
(
∑N

t=1 εt × xt)2.

• Then take the median of a bunch of such X ′s

17



Elephant detection algorithms

• Problem: finding all the elements whose frequency is over θN

• There are three types of solutions:

– Those based on “intelligent sampling”
– Those based on a sketch that provides a “reading” on the ap-

proximate size of the flow that an incoming packet belongs
to, in combination with a heap (to keep the largest ones).

– The hybrid of them

•We will not talk about change detection, as it can be viewed as
a variant of the elephant detection problem
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Karp-Shenker-Papadimitriou Algorithm

• A deterministic algorithm to guarantee that all items whose fre-
quency count is over θN are reported:

1. maintain a set < e, f >

2. foreach incoming data xj
3. search/increment/create an item in the set
4. if the set has more than 1/θ items then
5. decrement the count of each item in the set by 1,
6. remove all zero-count items from the set
7. Output all the survivors at the end

• Not suitable for networking applications
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Count-Min or Cormode-Muthukrishnan sketch
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• The count is simply the minimum of all the counts

• One can answer several different kinds of queries from the
sketch (e.g., point estimation, range query, heavy hitter, etc.

• It is a randomized algorithm (with the use of hash functions)
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Elephant detection algorithm with the CM sketch

• maintain a heap H of of “small” size

1. for each incoming data item xt
2. get its approximate count f from the CM sketch
3. if f ≥ θt then
4. increment and/or add xt to H
5. delete H.min() if it falls under θt
6. output all above-threshold items from H

• Suitable for networking applications
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Charikar-Chen-(Farach-Colton) sketch

• It is a randomized algorithm (with the use of hash functions)

• Setting: An m × b counter array C, hash functions h1, ..., hm
that map data items to {1, ..., b} and s1, ..., sm that map data
items to {−1,+1}.
• Add(xt): compute ij := hj(xt), j = 1, ...,m, and then incre-

ment C[j][ij] by sj(xt).

• Estimate(xt): return the median1≤j≤m {C[j][ij]× hj(xt)}
• Suitable for networking applications
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Sticky sampling algorithm [Manku and Motwani, 2002]

• sample (and hold) initially with probability 1 for first 2t ele-
ments

• sample with probability 1/2 for the next 2t elements and re-
sample the first 2t elements

• sample with probability 1/4 for the next 4t elements, resample,
and so on ...

• A little injustice to describe it this way as it is earlier than
[Estan and Varghese, 2002]

• Not suitable for networking applications due to the need to re-
sample
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Lossy counting algorithm [Manku and Motwani, 2002]

• divide the stream of length N into buckets of size ω = d1/θe
each

• maintain a set D of entries in the form < e, f,∆ >

1. foreach incoming data item xt
2. b := d tωe
3. if xt is in D then increment f accordingly
4. else add entry < xt, 1, b− 1 > to D
5. if t is divisible by ω then
6. delete all items e whose f + ∆ ≤ b

7. return all items whose f ≥ (θ − ε)N .

• Not suitable for networking applications
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Sample-and-hold [Estan and Varghese, 2002]

• maintain a set D of entries in the form < e, f >

1. foreach incoming data item xt
2. if it is in D then increment f
3. else insert a new entry to D with probability b ∗ 1/(Nθ)

4. return all items in D with high frequencies
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Multistage filter [Estan and Varghese, 2002]

• maintain multiple arrays of counters C1, C2, ..., Cm of size b
and a set D of entries < e, f >, and let h1, h2, ..., hm be hash
functions that map data items to {1, 2, ..., b}.
1. for each incoming data item xt
2. increment Ci[hi(xt)], i = 1, ...,m by 1 if possible
3. if these counters reach value MAX

4. then insert/increment xt into D
5. Output all items with count at least N × θ −MAX

• Conservative update: only increment the minimum(s)

• Serial version is more memory efficient, but increases delay
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Estimating L1 norm [Indyk, 2006]

• Recall the turnstile model (increments can be both positive and
negative)

• Lp norm is exactly L1(~a) =
∑n

i=1 |ai| and is more general than
frequency moments (increments are 1 each)

• Algorithm to estimate the L1 norm:

1. prescribe independent hash functions h1, ..., hm that maps
a data item into a Cauchy random variable distributed as
f (x) = 1

π
1

1+x2 and initialize real-valued registers r1, ..., rm to
0.0

2. for each incoming data item xt =< i(t), ci(t) >

3. obtain v1 = h1(i(t)), ..., vm = hm(i(t))

4. increment r1 by v1, r2 by v2, ..., and rm by vm
5. return median(|r1|, |r2|, ..., |rm|)
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Why this algorithm works [Indyk, 2006]

• Property of Cauchy distribution: if X1, X2, X are standard
Cauchy RV’s, and X1 and X2 are independent, then aX1 + bX2

has the same distribution as (|a| + |b|)X
• Given the actual state vector as < a1, a2, ..., an >, after the

execution of this above algorithm, we get in each ri a random
variable of the following format a1×X1 +a2×X2 + ...+an×
Xn >, which has the same distribution as (

∑n
i=1 |ai|)X

• Since median(|X|) = 1 (or F−1
X (0.75) = 1), the estimator sim-

ply uses the sample median to approximate the distribution me-
dian

•Why not “method of moments”?
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The theory of stable distributions

• The existence of p-stable distributions (S(p), 0 < α ≤ 2) is
discovered by Paul Levy about 100 years ago (p replaced with
α in most of the mathematical literature).

• Property of p-stable distribution: let X1, ..., Xn denote mutu-
ally independent random variables that have distribution S(p),
then a1X1 + a2X2 + ...+ anXn and (ap1 + ap2 + ...+ apn)1/pX are
identically distributed.

• Cauchy is 1-stable as shown above and Gaussian (f (x) = 1√
2π
e−x

2/2)
is 2-stable
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The theory of stable distributions, contd.

Although analytical expressions for the probability density func-
tion of stable distributions do not exist (except for p = 0.5, 1, 2),
random variables with such distributions can be generated through
the following formula:

X =
sin (pθ)

cos1/p θ

(
cos (θ(1− p))

− ln r

)1/p−1

,

where θ is chosen uniformly in [−π/2, π/2] and r is chosen uni-
formly in [0, 1] [Chambers et al., 1976].
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Fourier transforms of stable distributions

• Each S(p) and correspondingly fp(x) can be uniquely charac-
terized by its characteristic function as

E[eitX ] ≡
∫ ∞
−∞

fp(x)(cos (tx) + i · sin (tx)) = e−|t|
p
. (1)

• It is not hard to verify that the fourier inverse transform of the
above is a distribution function (per Polya’s criteria)

• Verify the stableness property of S(p):

E[eit(a1X1+a2X2+...+anXn)]

= E[eita1X1] · E[eita2X2] · . . . · E[eitanXn]

= e−|a1t|p · e−|a2t|p · . . . · e−|a2t|p

= e−|(a
p
1+a

p
2+...+a

p
n)1/pt|p

= E[eit((a
p
1+a

p
2+...+a

p
n)1/pX)].
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Estimating Lp norms for 0 < p ≤ 2

• Lp norm is defined as Lp(~a) = (
∑n

i=1 |ai|p)1/p, which is equiv-
alent to Fp (pth moment) under the cash register model (not
equivalent under the turnstile model)

• Simply modify the L1 algorithm by changing the output of
these hash functions h1, ..., hm from Cauchy (i.e., S(1)) to S(p)

•Moments of S(p) may not exist but median estimator will work
when m is reasonably large (say ≥ 5).

• Indyk’s algorithms focus on reducing space complexity and
some of these tricks may not be relevant to networking appli-
cations
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Data Streaming Algorithm for Estimating Flow Size Distribu-
tion [Kumar et al., 2004]

• Problem: To estimate the probability distribution of flow sizes.
In other words, for each positive integer i, estimate ni, the num-
ber of flows of size i.

• Applications: Traffic characterization and engineering, net-
work billing/accounting, anomaly detection, etc.

• Importance: The mother of many other flow statistics such as
average flow size (first moment) and flow entropy

• Definition of a flow: All packets with the same flow-label.
The flow-label can be defined as any combination of fields
from the IP header, e.g., <Source IP, source Port, Dest. IP,
Dest. Port, Protocol>.
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Architecture of our Solution — Lossy data structure

•Maintain an array of counters in fast memory (SRAM).

• For each packet, a counter is chosen via hashing, and incre-
mented.

• No attempt to detect or resolve collisions.

• Each 64-bit counter only uses 4-bit of SRAM (due to [Zhao et al., 2006b])

• Data collection is lossy (erroneous), but very fast.
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Counting Sketch: Array of counters
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Counting Sketch: Array of counters
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Counting Sketch: Array of counters
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Counting Sketch: Array of counters
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Counting Sketch: Array of counters
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Counting Sketch: Array of counters
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Counting Sketch: Array of counters
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Counting Sketch: Array of counters
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Counting Sketch: Array of counters
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Counting Sketch: Array of counters
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The shape of the “Counter Value Distribution”
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Estimating n and n1

• Let total number of counters be m.

• Let the number of value-0 counters be m0

• Then n̂ = m ∗ ln(m/m0) as discussed before

• Let the number of value-1 counters be y1

• Then n̂1 = y1e
n̂/m

• Generalizing this process to estimate n2, n3, and the whole flow
size distribution will not work

• Solution: joint estimation using Expectation Maximization
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Estimating the entire distribution, φ, using EM

• Begin with a guess of the flow distribution, φini.

• Based on this φini, compute the various possible ways of “split-
ting” a particular counter value and the respective probabilities
of such events.

• This allows us to compute a refined estimate of the flow distri-
bution φnew.

• Repeating this multiple times allows the estimate to converge
to a local maximum.

• This is an instance of Expectation maximization.
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Estimating the entire flow distribution — an example

• For example, a counter value of 3 could be caused by three
events:

– 3 = 3 (no hash collision);
– 3 = 1 + 2 (a flow of size 1 colliding with a flow of size 2);
– 3 = 1 + 1 + 1 (three flows of size 1 hashed to the same

location)

• Suppose the respective probabilities of these three events are
0.5, 0.3, and 0.2 respectively, and there are 1000 counters with
value 3.

• Then we estimate that 500, 300, and 200 counters split in the
three above ways, respectively.

• So we credit 300 * 1 + 200 * 3 = 900 to n1, the count of size 1
flows, and credit 300 and 500 to n2 and n3, respectively.
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How to compute these probabilities

• Fix an arbitrary index ind. Let β be the event that f1 flows of
size s1, f2 flows of size s2, ..., fq flows of size sq collide into
slot ind, where 1 ≤ s1 < s2 < ... < sq ≤ z, let λi be ni/m and
λ be their total.

• Then, the a priori (i.e., before observing the value v at ind)
probability that event β happens is

p(β|φ, n) = e−λ
∏q

i=1

λ
fi
si
fi!

.

• Let Ωv be the set of all collision patterns that add up to v. Then
by Bayes’ rule, p(β|φ, n, v) = p(β|φ,n)∑

α∈Ωv p(α|φ,n), where p(β|φ, n)

and p(α|φ, n) can be computed as above
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Evaluation — Before and after running the Estimation algorithm
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Sampling vs. array of counters – Web traffic.
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Sampling vs. array of counters – DNS traffic.
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Extending the work to estimating subpopulation FSD [Kumar et al., 2005a]

•Motivation: there is often a need to estimate the FSD of a sub-
population (e.g., “what is FSD of all the DNS traffic”).

• Definitions of subpopulation not known in advance and there
can be a large number of potential subpopulation.

• Our scheme can estimate the FSD of any subpopulation defined
after data collection.

•Main idea: perform both data streaming and sampling, and
then correlate these two outputs (using EM).
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Streaming-guided sampling [Kumar and Xu, 2006]
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Estimating the Flow-size Distribution: Results
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Figure 1: Estimates of FSD of https flows using various data sources.
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A hardware primitive for counter management [Zhao et al., 2006b]

• Problem statement: To maintain a large array (say millions)
of counters that need to be incremented (by 1) in an arbitrary
fashion (i.e., A[i1] + +, A[i2] + +, ...)

• Increments may happen at very high speed (say one increment
every 10ns) – has to use high-speed memory (SRAM)

• Values of some counters can be very large

• Fitting everything in an array of “long” (say 64-bit) SRAM
counters can be expensive

• Possibly lack of locality in the index sequence (i.e., i1, i2, ...) –
forget about caching
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Motivations

• A key operation in many network data streaming algorithms is
to “hash and increment”

• Routers may need to keep track of many different counts (say
for different source/destination IP prefix pairs)

• To implement millions of token/leaky buckets on a router

• Extensible to other non-CS applications such as sewage man-
agement

• Our work is able to make 16 SRAM bits out of 1 (Alchemy of
the 21st century)
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Main Idea in Previous Approaches [Shah et al., 2002, Ramabhadran and Varghese, 2003]

large DRAM counters
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Figure 2: Hybrid SRAM/DRAM counter architecture
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CMA used in [Shah et al., 2002]

• Implemented as a priority queue (fullest counter first)

• Need 28 = 8 + 20 bits per counter (when S/D is 12) – the theo-
retical minimum is 4

• Need pipelined hardware implementation of a heap.
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CMA used in [Ramabhadran and Varghese, 2003]

• SRAM counters are tagged when they are at least half full (im-
plemented as a bitmap)

• Scan the bitmap clockwise (for the next “1”) to flush (half-
full)+ SRAM counters, and pipelined hierarchical data struc-
ture to “jump to the next 1” in O(1) time

•Maintain a small priority queue to preemptively flush the SRAM
counters that rapidly become completely full

• 8 SRAM bits per counter for storage and 2 bits per counter for
the bitmap control logic, when S/D is 12.
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Our scheme

• Our scheme only needs 4 SRAM bits when S/D is 12.

• Flush only when an SRAM counter is “completely full” (e.g.,
when the SRAM counter value changes from 15 to 16 assum-
ing 4-bit SRAM counters).

• Use a small (say hundreds of entries) SRAM FIFO buffer to
hold the indices of counters to be flushed to DRAM

• Key innovation: a simple randomized algorithm to ensure that
counters do not overflow in a burst large enough to overflow
the FIFO buffer, with overwhelming probability

• Our scheme is provably space-optimal
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The randomized algorithm

• Set the initial values of the SRAM counters to independent
random variables uniformly distributed in {0, 1, 2, ..., 15} (i.e.,
A[i] := uniform{0, 1, 2, ..., 15}).
• Set the initial value of the corresponding DRAM counter to

the negative of the initial SRAM counter value (i.e., B[i] :=
−A[i]).

• Adversaries know our randomization scheme, but not the ini-
tial values of the SRAM counters

•We prove rigorously that a small FIFO queue can ensure that
the queue overflows with very small probability
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A numeric example

• One million 4-bit SRAM counters (512 KB) and 64-bit DRAM
counters with SRAM/DRAM speed difference of 12

• 300 slots (≈ 1 KB) in the FIFO queue for storing indices to be
flushed

• After 1012 counter increments in an arbitrary fashion (like 8
hours for monitoring 40M packets per second links)

• The probability of overflowing from the FIFO queue: less than
10−14 in the worst case (MTBF is about 100 billion years) –
proven using minimax analysis and large deviation theory (in-
cluding a new tail bound theorem)
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Distributed coordinated data streaming – a new paradigm

• A network of streaming nodes

• Every node is both a producer and a consumer of data streams

• Every node exchanges data with neighbors, “streams” the data
received, and passes it on further

•We applied this kind of data streaming to P2P [Kumar et al., 2005b]
and sensor network query routing, and the RPI team has ap-
plied it to Ad-hoc networking routing.
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Finding Global Icebergs over Distributed Data Sets [Zhao et al., 2006a]

• An iceberg: the item whose frequency count is greater than a
certain threshold.

• A number of algorithms are proposed to find icebergs at a sin-
gle node (i.e., local icebergs).

• In many real-life applications, data sets are physically distributed
over a large number of nodes. It is often useful to find the
icebergs over aggregate data across all the nodes (i.e., global
icebergs).

• Global iceberg 6= Local iceberg

•We study the problem of finding global icebergs over distributed
nodes and propose two novel solutions.
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Motivations: Some Example Applications

• Detection of distributed DoS attacks in a large-scale network

– The IP address of the victim appears over many ingress points.
It may not be a local iceberg at any ingress points since the
attacking packets may come from a large number of hosts
and Internet paths.

• Finding globally frequently accessed objects/URLs in CDNs
(e.g., Akamai) to keep tabs on current “hot spots”

• Detection of system events which happen frequently across the
network during a time interval

– These events are often the indication of some anomalies.
For example, finding DLLs which have been modified on
a large number of hosts may help detect the spread of some
unknown worms or spyware.
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Problem statement

• A system or network that consists of N distributed nodes

• The data set Si at node i contains a set of 〈x, cx,i〉 pairs.

– Assume each node has enough capacity to process incoming
data stream. Hence each node generates a list of the arriving
items and their exact frequency counts.

• The flat communication infrastructure, in which each node only
needs to communicate with a central server.

• Objective: Find {x|
∑N

i=1 cx,i ≥ T}, where cx,i is the frequency
count of the item x in the set Si, with the minimal communica-
tion cost.
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Our solutions and their impact

• Existing solutions can be viewed as “hard-decision codes” by
finding and merging local icebergs

•We are the first to take the “soft-decision coding” approach to
this problem: encoding the “potential” of an object to become
a global iceberg, which can be decoded with overwhelming
probability if indeed a global iceberg

• Equivalent to the minimax problem of “corrupted politician”

•We offered two solution approaches (sampling-based and bloom-
filter-based)and discovered the beautiful mathematical struc-
ture underneath (discovered a new tail bound theory on the
way)

• Sprint, Thomson, and IBM are all very interested in it
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Direct Measurement of Traffic Matrices [Zhao et al., 2005a]

• Quantify the aggregate traffic volume for every origin–destination
(OD) pair (or ingress and egress point) in a network.

• Traffic matrix has a number of applications in network man-
agement and monitoring such as

– capacity planning: forecasting future network capacity re-
quirements

– traffic engineering: optimizing OSPF weights to minimize
congestion

– reliability analysis: predicting traffic volume of network links
under planned or unexpected router/link failures
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Previous Approaches

• Direct measurement [Feldmann et al., 2000]: record traffic flow-
ing through at all ingress points and combine with routing data

– storage space and processing power are limited: sampling

• Indirect inference such as [Vardi, 1996, Zhang et al., 2003]: use
the following information to construct a highly under-constrained
linear inverse problem B = AX

– SNMP link counts B (traffic volume on each link in a net-
work)

– routing matrix (Ai,j =

{
1 if traffic of OD flow j traverses link i,
0 otherwise.

)
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Data streaming at each ingress/egress node

•Maintain a bitmap (initialized to all 0’s) in fast memory (SRAM)

• Upon each packet arrival, input the invariant packet content to
a hash function; choose the bit by hashing result and set it to 1.

– variant fields (e.g., TTL, CHECKSUM) are marked as 0’s
– adopt the equal sized bitmap and the same hash function

• No attempt to detect or resolve collisions caused by hashing

• Ship the bitmap to a central server at the end of a measurement
epoch
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How to Obtain the Traffic Matrix Element TMi,j?

• Only need the bitmap Bi at node i and the bitmap Bj at node j
for TMi,j.

• Let Ti denote the set of packets hashed into Bi: TMi,j = |Ti ∩
Tj|.
– Linear counting algorithm [Whang et al., 1990] estimates |Ti|

from Bi, i.e., |̂Ti| = b log b
U where b is the size of Bi and U

is the number of “0”s in Bi.
– |Ti ∩ Tj| = |Ti| + |Tj| − |Ti ∪ Tj|.
∗ |Ti| and |Tj| : estimate directly
∗ |Ti ∪ Tj|: infer from the bitwise-OR of Bi and Bj.
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Some theoretical results

• Our estimator is almost unbiased and we derive its approximate
variance

V ar[T̂Mi,j] = b(2e
tTi∩Tj + e

tTi∪Tj − etTi − etTj − tTi∩Tj − 1)

• Sampling is integrated into our streaming algorithm to reduce
SRAM usage

V ar[T̂Mi,j] =
b

p2

(
(e

Tp
b −

Xp
2b − e

Xp
2b )2 + e

Xp
b − Xp

b
− 1

)
+
X(1− p)

p

• The general forms of the estimator and variance for the inter-
section of k ≥ 2 sets from the corresponding bitmaps is derived
in [Zhao et al., 2005b].
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Pros and Cons

• Pros
– multiple times better than the sampling scheme given the

same amount of data generated.
– for estimating TMi,j, only the bitmaps from nodes i and j

are needed.
∗ support submatrix estimation using minimal amount of in-

formation
∗ allow for incremental deployment

• Cons
– need some extra hardware addition (hardwired hash function

and SRAM)
– only support estimation in packets (not in bytes)
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