
THE MATHEMATICS OF THE PENTIUM DIVISION BUG∗

ALAN EDELMAN†

SIAM REV. c© 1997 Society for Industrial and Applied Mathematics
Vol. 39, No. 1, pp. 54–67, March 1997 003

Abstract. Despite all of the publicity surrounding the Pentium bug of 1994, the mathematical
details of the bug are poorly understood. We discuss these details and supply a new proof of the
Coe–Tang result that the at-risk divisors have six consecutive ones in positions 5 through 10. Also,
we prove that the worst-case absolute error for arguments in [1, 2) is on the order of 1e–5.

Key words. Pentium, SRT division, floating point operations

AMS subject classification. 68M07

PII. S0036144595293959

1. Introduction. Quite properly, the risk to the population of Pentium users
emerged as the most provocative issue in the discussion of the Intel Pentium flaw.
Unfortunately, evaluating this risk may very well be infeasible. Other well-publicized
issues include Intel’s public relations policy (eventually chips were replaced automati-
cally on request), the stories of how Nicely found the bug and how Coe [4, 5] succeeded
in reverse engineering the algorithm based on “bad” numerators and denominators,
and those ubiquitous Pentium jokes [3]. Pratt [12] holds the record for the most
extensive computational experiments and classifications of the bug.

We also wish to emphasize that, despite the jokes, the bug is far more subtle than
many people realize. Andrew Wiles had a “bug” in the first public draft of his proof
of Fermat’s Last Theorem—his work was too important for anybody to laugh. The
bug in the Pentium was an easy mistake to make, and a difficult one to catch. One
way to catch it directly is Kahan’s [10] SRT division tester. Kahan’s tester chooses
arguments more cleverly than random testing, increasing the likelihood of discovering
whether an algorithm is somehow broken. His tester concentrates on and near the
fenceposts, which is always a good place to look for difficulties. Bryant [1] has a
different sort of tester. He uses binary decision diagrams as a check of the validity
of a PD table. This is the table in which the bug appears. His algorithm explicitly
checks that partial remainders remain within the critical region. It is not immediately
clear that this tester could be used directly on the Pentium chip.

Part of what makes the bug so interesting is that people can make unfortunate
inferences. The most important wrong conclusion one might reach from this paper is
that the SRT division algorithm is so complicated that it cannot be tested and should
not be used. The issue is emotional, akin to avoiding airplane travel after an accident.
The analysis in this paper is not needed to test chips, but does reveal how interesting
the Pentium bug truly is.

This article is a self-contained mathematical discussion of the bug, and only the
bug. Sections 2 through 4 contain a complete mathematical specification of the al-
gorithm which would be sufficient for readers to try to see if they can devise buggy
numerators and denominators without ever touching a Pentium chip.

∗Received by the editors October 26, 1995; accepted for publication (in revised form) July 3, 1996.
http://www.siam.org/journals/sirev/39-1/29395.html
†Department of Mathematics Room 2-380 and Laboratory for Computer Science, Massachusetts

Institute of Technology, Cambridge, MA 02139 (edelman@math.mit.edu). This author was supported
by a fellowship from the Alfred P. Sloan Foundation.

54

THE MATHEMATICS OF THE PENTIUM DIVISION BUG 55

We begin with a quick discussion of radix (or base) 4 SRT division and its carry–
save implementation. A very nice tutorial on the subject was recently written by
Goldberg [9]. We then give a new proof of the Coe–Tang [6] result that it takes six
ones to reach a flaw. The first part of the proof begins with a simple analysis of the
inequalities that either prevent you or allow you access to an erroneous table entry.
The second part of the proof is an arithmetic puzzle not so very different in spirit
from the sort found in recreational mathematics, where one must replace letters with
digits to make a correct sum, as in this one from a collection by Fixx [8]:

S E N D 9 5 6 7
+ M O R E = + 1 0 8 5 ,
--------- ---------
M O N E Y 1 0 6 5 2

uniquely.
We conclude with an explanation of why a defective Pentium was always guar-

anteed to have an absolute error no bigger than 5e-5. when it divided inputs in the
standard interval [1, 2).

2. SRT division. We now present the radix 4 version of the SRT division algo-
rithm. This algorithm computes a radix 4 quotient where the digits are not from the
set {0, 1, 2, 3} as might be expected from base 4, but rather from {−2,−1, 0, 1, 2}. The
extra digit introduces a very useful “slack” into the computation. Binary multiplica-
tion by digits 0, ±1, and±2 also requires simpler hardware than would, say, the digit 3.

Letting p and d denote the numerator and the denominator, we may as well
assume that 1 ≤ p, d < 2. The SRT division algorithm may be expressed succinctly
in conceptual pseudocode:

Radix 4 SRT Division

p0 := p
for k = 0, 1, . . .

As a function of pk and d, determine a digit qk ∈ {−2,−1, 0, 1, 2} in such a
way that

pk+1 := 4(pk − qkd)
will satisfy |pk+1| ≤ 8

3d
end
p/d =

∑∞
i=0 qi/4

i.

The determination of qk is performed by looking up a table described in section 4.
How the lookup table works on the Pentium is not important yet. The trouble with a
defective Pentium is, by accident, that its table contains entries qk, which if accessed
would produce pk+1, which would violate the requirement |pk+1| ≤ 8

3d.
If we replace the set {−2,−1, 0, 1, 2} with {0, . . . , 9}, then the 4 with a 10, and

finally the inequality |pk+1| ≤ 8
3d with pk+1 ∈ [0, 10d), then the pseudocode describes

ordinary base 10 long division.

3. Understanding why SRT works. It is easy to see that if |pk| ≤ 8
3d then

at least one of the five values of pk − qkd has absolute value ≤ 2
3d. Figure 3.1 (with

unit length d) illustrates this. The indicated qk value translates each interval to the

56 ALAN EDELMAN

s s s s s s s s s s s s s s s s s
s s ss s s
s ss s

− 8
3 − 4

3 − 2
3

− 5
3 − 1

3

2
3

4
3

8
3

1
3

5
3

qk ← −2 qk ← 0 qk ← +2

qk ← −1 qk ← +1

FIG. 3.1. This figure shows the interval [− 8
3d,

8
3d]. Each “tic” mark represents the value d/3.

Five subintervals are shown: three labeled from above and two from below, with values for qk. If p is
in one of the five subintervals and qk is the digit labeling the subinterval, then the operation sending
p to p− qkd sends the subinterval to the one corresponding to qk ← 0. The operation sending p to
4(p− qkd), then, keeps p from leaving the interval [− 8

3d,
8
3d].

qk ← 0 interval. Overlaps between upper and lower intervals show where either of two
choices for qk will work. The qk ← 0 interval, when scaled up by a factor of 4, remains
within the interval |p| ≤ 8

3d; that is why we may run the algorithm ad infinitum.
We can therefore find a qk for which

pk+1 = 4(pk − qkd)(3.1)

has absolute value ≤ 8
3d for every k > 0.

Since Equation (3.1) is equivalent to

pk
d

4−k =
qk
4k

+
pk+1

d
4−(k+1),

we may prove by induction that

p

d
=
(
q0 +

q1

4
+ · · ·+ qk−1

4k−1

)
+
pk
d

4−k.(3.2)

Letting k →∞ in Equation (3.2) proves that the SRT algorithm computes the correct
quotient.

Notice that because of the overlap regions, the representation of the quotient in
terms of the qk is not uniquely determined, but the value of the quotient is, of course,
uniquely determined.

There is a popular misconception that the SRT algorithm is capable of correcting
“mistakes” by using the redundant set of digits. Though the overlap in the regions
may occasionally allow either of two choices for qk, if an invalid qk is chosen the
algorithm will never recover.

A consequence of Equation (3.2) is that

pk = d
∞∑
i=k

qi/4i−k = d
(
qk +

qk+1

4
+
qk+2

42 + · · ·
)
.

Summing the geometric progression with the extreme choices of all qi = +2 or all
qi = −2 shows that the requirement |pk| ≤ 8

3d is not an arbitrary choice, but a
necessary ingredient in the algorithm.

On defective Pentiums, for certain values of d and for certain values of pk just a
little smaller than 8

3d, the chip’s table supplies the value 0 for qk rather than 2. Then
pk+1 turns out to be nearly 10d, which is far outside of the range representable by our
geometric progression. Consequently, after the Pentium has supplied qk = 0 instead
of 2, it cannot recover a correct quotient.

A small observation that we will use later is the following lemma.

THE MATHEMATICS OF THE PENTIUM DIVISION BUG 57

LEMMA 3.1. If qk = 2, then pk+1 ≤ pk.
Proof. This is an immediate consequence of the bound pk ≤ 8

3d and Equation
(3.1).

4. Quotient digit selection on the Pentium. The Pentium uses a two-
dimensional lookup table to obtain qk. One entry is D, the binary number of the
form x.yyyy, i.e., the integer multiple of 1/16, which approximates d from below by
four bits. Mathematically,

D ≤ d < D+ ≡ D +
1
16
.(4.1)

The other entry is Pk, which is obtained from the carry–save representation to be
explained momentarily. Pk is a binary number of the form xxxx.yyy, i.e., an integer
multiple of 1/8. It is related to pk by the condition that

Pk ≤ pk < Pk +
1
4
,(4.2)

but this condition does not define Pk given pk; rather, it merely narrows it down to
two choices. The choice that is made will be defined in Equation (4.4).

The lookup table [6, 13] that computes qk as a function of Pk and D appears
in Figure 4.1. The five colors indicate the five digits +2,+1, 0,−1,−2 from top to
bottom. The five “stars” at the top of the table indicate table entries that must be
2 but erroneously return 0 on flawed Pentium chips. Note that the five columns are
completed using the Coe model, while other columns have ambiguous entries. Indeed,
we only know these values because of the bug; otherwise it would be impossible to
know. The five entries on the bottom of the table with white borders are not reached;
hence any value for qk may be placed there. Any proposed verifier of the PD table
must be cognizant of the fact that these entries are unreachable or it may mistakenly
determine the table invalid. As Pratt writes [12],

One thinks of testing as being as good as verification if one could
test all possible cases. As a weakened version of this, a comprehensive
test should exercise every device and/or line of code in the system.

The Pentium bug reveals a serious limitation of this approach.
There is of course no data that can exercise unreachable code or
table entries. Thus if one believes that the five “missing” entries
are unreachable, then no attempt will be made to produce a test for
this case. Hence missing entries are likely to be overlooked by any
fabricated set of test cases.

The operative word in the quotation above is the word believes.
The five bad entries occur for those divisors d for which D has any of the five

values 17/16, 20/16, 23/16, 26/16, 29/16. These are the values which allow us a
peek at how the Pentium chip is performing division. For the other D values there is
no algorithm pathology, so there is no independent way to be sure which digits are
selected in the overlap regions. Hence the white boxes in the interior of the lookup
table indicate that two possible choices are equally correct. It is worth mentioning
that a careless reading of [7] might suggest that the table is sign symmetric. The
table is not sign symmetric, and one may speculate that this is one of several errors
that contributed to the bug.

58 ALAN EDELMAN

TABLE 4.1.

q PMin
q PMax

q

−2 − 8
3D+ − 1

4 −
4
3D+

−1 − 1
8 −

4
3D+ b− 1

4 −
1
3D+c

0 b− 1
8 −

1
3D+c d− 1

8 + 1
3D+e

1 d 1
3D+e − 1

8 + 4
3D+

2 4
3D+ − 1

8 + 8
3D+

A matlab program to produce table entries follows. Half integers denote that any
value is allowed while infinity denotes entries that are not accessed:

P=8*(-6:.125:6)’;q=0*P;
for d=[1:(1/16) : 2-(1/16)]; D=floor(16*d); Dp=D+1;
qq= (P >= floor(-8*Dp/6)-1) + (P >= ceil(-5*D/6)) + ... %q=-2

(P >= floor(-4*Dp/6)-1) + (P >= ceil(-2*D/6)) + ... %q=-1
(P >= floor(-Dp/6)-1) + (P >= ceil(Dp/6)) + ... %q= 0
(P >= floor(2*D/6)-1) + (P >= ceil(4*Dp/6)) + ... %q= 1
(P >= floor(5*D/6)-1) + (P >= ceil(8*Dp/6)) ; %q= 2
q = [q qq];

end
q=(q-5)/2; q(abs(q)==2.5)=Inf*q(abs(q)==2.5); q(:,1)=P/8;q

For the remainder of this paper, we are concerned only with the five bad columns
in the lookup table. These are the columns with the explosion symbols in Figure
4.1. Mathematically, they are the columns where 2

3D+ is an integer multiple of 1/8.
Following Coe and Tang [6], a flawed entry exists in the box corresponding to the
value

buggy entry = PBad =
8
3
D+ −

1
8
.

The information expressed in colors in Figure 4.1 may be expressed succinctly with
thresholds by identifying which of the five intervals Pk falls in:

PMin
q ≤ Pk ≤ PMax

q .(4.3)

The thresholds according to [6] are shown in Table 4.1, where the floor and ceiling
symbols round to multiples of 1/8.

It is easy to check that the q chosen in this manner satisfies the constraints of
the algorithm specified in section 2. We stress once again that the thresholds given
in Table 4.1 are meant to apply only in the five buggy columns.

4.1. The computation of Pk : Carry–save addition. Imagine adding 100
numbers on a calculator. On many calculators after typing x1 + x2 the sum is dis-
played, and then folding in x3 the new sum is obtained, etc. On computers it is
convenient to avoid the carry propagation by leaving the result in so-called “carry–
save” format (see [2, pp. 668–669]). In this format x1 + x2 is represented as s2 + c2.
When we add in x3 the result is represented as s3 + c3, etc. The si and ci are known
as the sum and carry words, respectively. The basic idea is that when computing the
sum of s2 + c2 + x3 in binary, every column can add up to 0, 1, 2, or 3 so the modulo
2 sum of the result (0 or 1) is stored in the sum word, and the carry bit is stored in
the carry word. Here is an example:

THE MATHEMATICS OF THE PENTIUM DIVISION BUG 59

x1 0 1 0 1 1
x2 0 1 1 0 1
s2 0 0 1 1 0
c2 1 0 0 1 0
x3 0 1 1 1 0
s3 1 1 0 1 0
c3 0 1 1 0 0

Generally speaking, sum(a,b,c) is a+b+c mod 2 in mathematical language, and
a⊕ b⊕ c in a more computer science style language. carry(a,b,c) may be expressed
as a+b+c ≥ 2 in a matlab sort of language, or as (a∧b)∨(a∧c)∨(b∧c). The numbers
ck and sk constitute the carry–save representation of

∑k
i=1 xk. This representation is

not unique. However, the least significant bit of ck is always 0.
On the Pentium, pk is represented in the carry–save form ck + sk so that the

expression pk+1 = pk−qkd is computed using a carry–save adder. If qk is positive −qkd
is represented as the one’s complement of qkd.1 Since forming the two’s complement
is a two-part process, it is worthwhile simply to complement the bits when forming
qkd and delay the injection of the addition of 1 by changing the least significant bit
of ck to a one.

In general, pk − qkd is obtained from d by a combination of shifting and/or ones
complementing or zeroing. The fact that these are fast operations on a computer
explains why the digit set {−2,−1, 0, 1, 2} is so useful. To perform addition correctly,
if a one’s complement number is used, a 1 is added to the least significant carry bit
before shifting. We will see this in the example.

Given that pk = ck + sk, it is natural to define

Pk ≡ Ck + Sk,(4.4)

where Ck and Sk represent ck and sk, respectively, rounded down to the nearest bit.
Since

Ck ≤ ck < Ck +
1
8

and Sk ≤ sk < Sk +
1
8
,

we can conclude that Pk ≤ pk + 1
4 .

Radix 4 SRT Division with Carry–Save Addition Pentium Style

D := bdc1/16
S0 := p0, C0 := 0
for k = 0, 1, . . .
Pk := bckc1/8 + bskc1/8
qk := table lookup(Pk, D)
compute (−qkd) by zeroing, shifting, and/or ones complementing
ck+1 + sk+1 := 4(ck + sk + (−qkd)) carry–save addition and shift

Correct for one’s complement by injection into ck+1 if qk < 0
end
p/d =

∑∞
i=0 qi/4

i.

1One’s complement represents negative integers by complementing every bit. Two’s complement
is obtained by complementing a bit string and then adding one. Mathematically, a two’s complement
number is correct modulo a power of 2.

60 ALAN EDELMAN

TABLE 5.1.

Description Symbol Value

Buggy entry PBad − 1
8 + 8

3D+

Foothold PBad − 1
8 − 1

4 + 8
3D+

Top of q = −2 region PMax
−2 − 1

4 −
4
3D+

Top of q = −1 region PMax
−1 − 1

4 −
1
3D+

The following example illustrates the division of 1.875 by 1.000 using fewer bits
than are actually used in the Pentium. (The actual number of bits used in the
Pentium is important (see [12, section 2, last paragraph]), but not for our concerns
here.) Of course, dividing by 1 is trivial, but the important features of the algorithm
are illustrated below.

1.875 = 0001.111 00000000000 s0=1.875 in binary
0000.000 00000000000 c0 is initially set to 0

−2× 1 = 1101.111 11111111111 2 (from lookup table, where P0 = C0 + S0) in one’s complement
0000.011 11111111100 s1 is the sum from above with the two place shift
1111.000 00000000100 c1 is the carry, with shift, and one’s complement correction bit

−(−1)× 1 = 0001.000 00000000000 S1 = .011 = 3/16, C1 = 1111.000 = −1, P1 = −13/16.
1001.111 11111100000
1000.000 00000100000 no correction bit since no one’s complement in previous iteration

−2× 1 = 1101.111 11111111111
0000.000 00011111100
1111.111 11100000100

−0× 1 = 0000.000 00000000000
1111.111 11111100000
0000.000 00000100000
0000.000 00000000000
1111.111 11100000000
0000.000 00100000000

We have thus computed the representation 1.875 = 2− 1
4 + 2

16 + 0
32 + · · · .

5. Analyzing the bug.

5.1. It is not easy to reach the buggy entry. We proceed to prove a lemma
which states that the buggy entry PBad can only be reached from the entry below it
in the PD table. This entry just below the bad entry plays the role of a foothold.
The existence of this foothold is a subtle phenomenon that may not have been readily
guessed from general properties of SRT division. I believe that its existence has
surprised everybody. Any thought that each table entry is somehow equally likely to
be reached is very wrong.

The entries that play an important role in reaching the bug are displayed in Table
5.1.

The result that we proceed to prove in Lemma 5.1 below is that one can only
reach the buggy entry from the foothold. We will also show that it is possible to reach
the foothold in four ways: from the top of the q = −2 region, the top of the q = −1
region, the foothold itself, or the entry below the foothold. However, if the foothold
is reached from the latter two of the four routes, the buggy entry cannot be reached
on the next step. Therefore, there are only two viable routes to reach the bug. It
is worth emphasizing that reaching the foothold is necessary for reaching the buggy
entry, but not sufficient. It is quite possible to reach the foothold, but not hit the
buggy entry on the next step.

We now proceed with our analysis. Directly from the definition of D+ given in
Equation (4.1), we can write the following identities for qkD+ in terms of the binary

THE MATHEMATICS OF THE PENTIUM DIVISION BUG 61

0000.000

0001.000

0010.000

0011.000

0100.000

0101.000

1111.000

1110.000

1101.000

1100.000

1011.000

Divisor

S
h

if
te

d
 P

ar
ti

al
 R

em
ai

n
d

er

1.
00

00
1.

00
01

1.
00

10
1.

00
11

1.
01

00
1.

01
01

1.
01

10
1.

01
11

1.
10

00
1.

10
01

1.
10

10
1.

10
11

1.
11

00
1.

11
01

1.
11

10
1.

11
11

FIG. 4.1. The quotient digit qk ∈ {−2,−1, 0, 1, 2} is a function of Pk and D. During one SRT
division D is fixed, so entries are accessed within one column. For example, if 1 ≤ D < 17/16, then
only entries in the first column are accessed. The five trapezoidal bands (green, blue, etc.) indicate
the digits qk from +2 to −2 in decreasing order from the top. The five flawed entries that should
be +2 but which instead are accidentally 0 are indicated by the explosion symbols at the top of the
five columns. In these columns we know from the Tim Coe model the values of the entries. In other
columns, there are empty squares in the interior where two possible entries are valid. Toward the
top and bottom of the table are entries that a correctly working Pentium never accesses. Note the
five entries toward the bottom without borders. They also are never accessed.

62 ALAN EDELMAN

expansion of d = 1.d1d2d3d4d5 . . .:

2D+ = 0 0 1d1. d2 d3 d4 0 + 1/8
D+ = 0 0 0 1. d1 d2 d3 d4 + 1/16

0D+ = 0 0 0 0. 0 0 0 0
−D+ = 1 1 1 0. d̄1 d̄2 d̄3 d̄4
−2D+ = 1 1 0 d̄1. d̄2 d̄3 d̄4 0

,(5.1)

where the negative numbers are expressed in two’s complement notation.2 The chop-
ping is a round down process, but D+ is akin to a round up, hence the existence of
the 1

8 and 1
16 terms.

Therefore, in terms of Pk and D+, we have the version of Equation (3.1) that is
actually computed on the Pentium:

Pk+1 = 4(Pk − qkD+) +Rk,(5.2)

where Rk is determined by a few higher-order bits. Working out the exact value of
Rk requires careful attention to the algorithmic details. The reader may verify that

Rk = 0.0s4s5 +0.0c4c5 +


0.0 d5 d6
0.0 0 d5
0
0.0 0 d̄5
0.0 d̄5 d̄6

+
1
8
× carry–over

s6, c6,


d7
d6
0
d̄6
d̄7



+


−1/2
−1/4

0
0
0



if


q = −2
q = −1
q = 0
q = 1
q = 2

,

where the si, ci, and di are the appropriate bits in the sum, carry, and divisor, respec-
tively.3 The function carry–over(b1, b2, b3) is 1 if at least two of its arguments are 1.
The last correction term of −1/2 and −1/4 is a direct consequence of Equation (5.1).

Taking the maximum value of the parameters, we see that

Rk ≤ RMax
k ≡


3/4
3/4
7/8
1

5/4

 if


q = −2
q = −1
q = 0
q = 1
q = 2

.(5.3)

We assume that D+ is a multiple of 3/16; i.e., it corresponds to one of the five
flawed table entries. For each value of qk, we may tabulate the largest possible Pk+1
that may be reached as a function of the extreme Pk by using Equations (5.2) and

2Two’s complement represents integers by reducing modulo a power of 2. Add D+ and −D+ or
add 2D+ and −2D+ (and multiply by 16 to remove the binary point) to see that the sum is a power
of 2.

3We regret the abuse of notation—everywhere else in this paper si refers to all of the bits in the
sum word of the ith iteration, but here it represents the ith bit during an unspecified iteration.

THE MATHEMATICS OF THE PENTIUM DIVISION BUG 63

(5.3). Therefore, the table below is a transition table that shows how high one can
reach in the table given the previous value of qk. This is our first glimpse at just how
difficult it is to reach the bad entry PBad.

If Pk is at most ↓, then Pk+1 is at most ↓ can reach the
qk Pk PMax

k+1 = 4(Pk − qkD+) +RMax
k foothold

−2 PMax
−2 = − 4

3D+ − 1
4

8
3D+ − 1

4 = PBad − 1
8 yes

−1 PMax
−1 ≤ − 1

3D+ − 1
4

8
3D+ − 1

4 = PBad − 1
8 yes

0 PMax
0 ≤ 1

3D+
4
3D+ + 7

8 < PBad − 1
8 no

1 PMax
1 = 4

3D+ − 1
8

4
3D+ + 1

2 < PBad − 1
8 no

If Pk is at most ↓, then Pk+1 is at most ↓ reach buggy entry
2 PBad − 1

8 = 8
3D+ − 1

4
8
3D+ + 1

4 > PBad yes

2 PBad − 1
4 = 8

3D+ − 3
8

8
3D+ − 1

4 = PBad − 1
8 no

(5.4)

The two “less than” inequalities in the table above are a simple consequence of
D+ > 1. In terms of Figure 4.1, the above table states that it is impossible to reach
the explosion symbol even if you are at the very top of the brown, pink, purple, or
blue regions. The only way to reach the explosion symbol is from the green entry
immediately below it. Therefore, we denote this entry the foothold.

LEMMA 5.1. The sequence of P ’s and corresponding q’s that leads to the bad entry
is given below:

P: PMax
−2 /P

Max
−1 −−−−−→

{
PBad − 1

8

}
m≥1 −−−−−→ PBad

q: −2/− 1 −−−−−→ {2}m≥1 −−−−−→ (bad entry)
R: R = RMax R = RMax − 3

8

.(5.5)

Here the subscript m in the middle column denotes a repetition of the entry m ≥ 1
times, and the first column indicates that either a PMax

−2 or PMax
−1 may start the path to

the bug corresponding to either q = −2 or q = −1, respectively.
Proof. Our proof goes from right to left. The table in (5.4) shows that we can

only reach PBad from PBad − 1
8 . The table also shows that for q = −2 or q = −1,

we can just barely reach PBad − 1
8 , only when Pk = PMax

k and Rk = RMax
k . PBad − 1

8
may also be reached from PBad − 1

4 , but if Pk = PBad − 1
4 then PBad − 1

4 ≤ pk < PBad,
and Lemma 3.1 guarantees that while the sequence produces twos all future pk will
also satisfy pk < PBad, which precludes reaching the flawed entry, i.e., reaching k with
Pk = PBad.

6. The “send-more-money” puzzle for the Pentium.
THEOREM 6.1 (Coe, Tang). A flawed table entry can only be reached if the divisor

d = d1d2d3 . . . has the property that the six consecutive bits from d5 to d10 are all ones.
(Of course 1.d1d2d3d4 must be one of the five bad values.)

Proof. First assume that m = 1. (We later show in Lemma 6.6 that this is the
only possibility.) The table below illustrates the carry–save division calculation that
leads to the buggy entry. We devised a subscript notation to facilitate the reader in
following the progression of fill-in. Our five main threads of argument are denoted by
α, β, γ, δ, and ε. If you fill in the digits of our “send-more-money” in the following

64 ALAN EDELMAN

sequence, you will fill in the numbers in order:

α♠, α1
β♠, β1
γ♠, γ1, γ2
δ♠, δ1, δ2, δ3
ε♠, ε1, ε2

Only five observations are needed for this argument. They are associated with
the ♠ symbol, as with α♠. Then, in sequence, we let α1, α2, . . . denote bits we can fill
in more or less mechanically based on the carry–save division process. The only ideas
used to fill in the mechanical entries are the shifted carry–sum division process and
the possible shifting or complementing of the bits in d. Asterisks (∗) or blank spaces
indicate entries whose values are not of interest. Also of no interest are values to the
left of the binary point.

Case I: Reaching the bug from –2 Case II: Reaching the bug from –1
sj−2 .∗ ∗ ∗ 1α♠ 1α♠ 1γ1 1δ2 1ε2 sj−2 .∗ ∗ ∗ 1α♠ 1α♠ 1γ1 1δ2 1ε2

q = −2 cj−2 .∗ ∗ ∗ 1α♠ 1α♠ 1γ1 1δ2 1ε2 cj−2 .∗ ∗ ∗ 1α♠ 1α♠ 1γ1 1δ2 1ε2 q = −1

2d .d2 d3 d4 1α♠ 1α♠ 1γ1 1δ2 1ε2 d .d1 d2 d3 1α♠ 1α♠ 1γ1 1δ2 1ε2
sj−1 .∗ 1α1 1α1 1γ♠ 1δ1 1ε1 sj−1 .∗ 1α1 1α1 1γ♠ 1δ1 1ε1

q = 2 cj−1 .1α1 1α1 1β♠ 1γ♠ 1δ1 1ε1 cj−1 .1α1 1α1 1β♠ 1γ♠ 1δ1 1ε1 q = 2

−2d .d̄2 d̄3 d̄4 0α1 0α1 0γ2 −2d .d̄2 d̄3 d̄4 0α1 0γ2 0δ3
sj .∗ 0γ1 0δ2 sj .∗ 0γ1 0δ2

bug cj .∗ 1δ♠ 1ε♠ cj .∗ 1δ♠ 1ε♠ bug

Explanation:
α♠ Since R (Lemma 5.1) must equal Rmax we must have c4, c5, s4, s5, and the

two d bits equal to 1.
β♠ 8(PBad − 1

8) is even. (It can be 22, 26, 30, 34, or 38.) To obtain an even
number, we must add a 1 to the 1α1 immediately above.

γ♠ R = RMax − 3
8 (Lemma 5.1). The 0α1 immediately below reduces R by 2/8,

and a 0 in the γ♠ position would reduce R by another 2/8, giving 4/8.
δ♠ 8PBad ∈ {23, 27, 31, 35, 39} is 3 (mod 4).
ε♠ 8PBad ∈ {23, 27, 31, 35, 39} is 3 (mod 4).

The conclusion that we have so far is that if we begin with q = −2, we must then
have that d5, d6, d7, d8, d9 are all 1. If we begin with q = −1, then we conclude that
d5, d6, d7, d8 are all 1.

We are almost, but not quite, finished. Having all those ones at the q = −2 or
q = −1 step allows us to go back yet another step. A quick analysis shows that the
line above sj−2 can only be d or 2d and that it too has many ones. We can then
guarantee that d9 and d10 are also 1.

LEMMA 6.6. The value for m in Lemma 5.1 must be 1.
Proof. We proceed with the same sort of send-more-money puzzle. The assump-

tion of more than one q = 2 in sequence yields a contradiction. We encourage readers
to try to find the contradiction themselves rather than read the proof to follow. In the
diagram below we do not use subscripts for values that we have already obtained from
α, β, and γ in the proof of Theorem 6.1. We then continue the numbering convention
with ζ.

THE MATHEMATICS OF THE PENTIUM DIVISION BUG 65

Case I: Not reaching the bug from –2, 2, 2 Case II: Not reaching the bug from –1, 2, 2
Sequence leading to contradiction Sequence leading to branch

sj−2 .∗ ∗ ∗ 1 1 1 1ζ5 sj−2 .∗ ∗ ∗ 1 1 1
q = −2 cj−2 .∗ ∗ ∗ 1 1 1 1ζ5 cj−2 .∗ ∗ ∗ 1 1 1 q = −1

2d .d2 d3 d4 1 1 1 1ζ5 d .d1 d2 d3 1 1 1
sj−1 .∗ 1 1 1 1ζ4 ∗ 1ζ7 sj−1 .∗ 1 1 1

q = 2 cj−1 .1 1 1 1 1ζ4 ∗ 1ζ7 cj−1 .1 1 1 1 q = 2

−2d .d̄2 d̄3 d̄4 0 0 0 0ζ6 −2d .d̄2 d̄3 d̄4 0 0
sj .∗ 0 0ζ2 1ζ♠ 0ζ7 sj .∗ 0 ♠ 1

q = 2 cj .∗ 1ζ3 0ζ1 1ζ♠ 1η♠ cj .∗ ♠ ♠ 1 q = 2
−2d .d̄2 d̄3 d̄4 0 0 0 −2d .d̄2 d̄3 d̄4 0 0
sj+1 1η1 0θ♠
cj+1 1η2

Explanation (Case I):
ζ♠ If the next entry is the bug, R = Rmax − 3

8 ; otherwise R = Rmax − 4
8 . Either

way we need these two ones or we lose 5
8 .

η♠ We have already lost 4
8 so the next digit is a 2 and we cannot lose any more.

θ♠ This is the contradiction! It must be a 0 because if it were 1 we would have a
1 in the line above where we already have a 0. On the other hand, to reach
either the foothold or the buggy entry on the next step, the value must be 1
or R is too small. This is the contradiction.

Explanation (Case II):
Case II has only been started above. The only two possibilities for the three spades
pattern in the diagram above are

0 ♠
♠ ♠ =

0 1
0 1 and

0 0
1 0 ,

since the foothold must be 2 modulo 4. Following through on the first possibility it
becomes clear that the pattern

.∗ ∗ 1 1 0

.∗ 0 1

.∗ ∗ ∗ 0 0 1 0

perpetuates ad infinitum. Following the bug backwards in the second possibility would
show that the pattern of bits for every step when q = 2 from the jth iteration until
the bug is hit would have the pattern

.∗ 0 0 1 1 1

.∗ 1 0 1 1 1

.∗ ∗ ∗ 0 0 0 1
,

which quickly leads to a contradiction.

7. At least nine steps to failure. Naively, one might have thought that the
bad table entries would be hit uniformly at random. If this had been the case, the
bug surely would have been noticed earlier and would have had the potential to cause
more significant damage in every instance it went unnoticed.

Even in the worst case of the error, the absolute error in the quotient is roughly
0.00005 = 5e − 5 when dividing two numbers in the interval 1 ≤ x < 2. This is the

66 ALAN EDELMAN

worst case; the actual errors can be far smaller. Pratt [11] has exhaustively computed
all the single precision errors and has found that the quotient 14909255/11009918 has
an absolute error that is roughly 5e− 5. (In fact, it is 4.65e− 5.) This may be used
to test a Pentium chip. The correct answer is 1.35416585. One must exercise care
in testing. Matlab 4.2 will trap and patch the bug. Other programs may simulate
division in software or use non-IEEE compliant formulas such as x/y = (1/y)*x. The
highest relative error Pratt reported is roughly 6e− 5.

The reason the error is bounded is that, no matter what, the Pentium is guaran-
teed to compute q0 through q7 correctly. This is what we will now prove. The result
is a straightforward consequence of the results in the previous section.

In particular, if the bug occurs at step 8, we saw in section 6 that step 6 must
have the form shown in the diagram below, which shows the sum, carry, and qkd bits,
respectively, starting with bit number 4. Taking into account that all the carry bits
are 0 at step 1, it is fairly easy to show (following and up and down “wave” motion)
that the bit patterns must fall as in the diagram below. However, since q1 is positive,
it must follow that all of q2,. . . ,q6 are positive by observing the overlap in the qkd row
from one step to the next. However, we know that q6 < 0, so we have a contradiction.
Therefore, the pattern shown below as step 6, which must occur to trigger the bug,
cannot appear before the seventh step, and hence the bug appears no earlier than the
ninth step.

Key to diagram below

Start with ♠0 and follow ♠1 up the chart. Then start with ♥0 and

follow the ♥s down the chart. Next follow the ♣, the ♦, then the

α and the β. This notation makes it easier to spot the flow on the

page.

· · · · · · · · · · · · · · · 1♠5 1♥0 1♣0 1♦0 1α0
Step 1: 0

· · · · · · · · · · · · · · · 1♠5 1♥0 1♣0 1♦0 1α0
· · · · · · · · · · · · 1♠4 0♥1 0♣1 0♦1 0α1 0β1 · ·

Step 2: · · · · · · · · · · · · 1♠4 1♥1 1♣1 1♦1 1α1 · · ·
· · · · · · · · · · · · 1♠4 1♥1 1♣1 1♦1 1α1 · · ·
· · · · · · · · · 1♠3 1♠3 0♥2 0♣2 0♦2 0α2 · · · · ·

Step 3: · · · · · · · · · 1♠3 1♠3 1♥2 1♣2 1♦2 · · · · · ·
· · · · · · · · · 1♠3 1♠3 1♥2 1♣2 1♦2 · · · · · ·
· · · · · · 1♠2 1♠2 1♠2 0♥3 0♣3 0♦3 · · · · · · · ·

Step 4: · · · · · · 1♠2 1♠2 1♠2 1♥3 1♣3 · · · · · · · · ·
· · · · · · 1♠2 1♠2 1♠2 1♥3 1♣3 · · · · · · · · ·
· · · 1♠1 1♠1 1♠1 1♠1 0♥4 0♣4 · · · · · · · · · · ·

Step 5: · · · 1♠1 1♠1 1♠1 1♠1 1♥4 · · · · · · · · · · · ·
· · · 1♠1 1♠1 1♠1 1♠1 1♥4 · · · · · · · · · · · ·

1♠0 1♠0 1♠0 1♠0 1♠0 · · · · · · · · · · · · · · ·
Step 6: 1♠0 1♠0 1♠0 1♠0 1♠0 · · · · · · · · · · · · · · ·

· 1♠0 1♠0 1♠0 1♠0 · · · · · · · · · · · · · · ·
↑

Bit #4

8. Conclusions. We have provided a new proof of the Coe–Tang result that the
only divisors at risk are those divisors with six consecutive ones in the fifth through
tenth positions. We also explain why the absolute error is bounded by 5e-5 when
dividing two numbers in the standard interval [1, 2). Though we do not know exactly
how the error occurred, we do point out that the error was probably more than an
elementary careless accident. It is this author’s position that the accident was more

THE MATHEMATICS OF THE PENTIUM DIVISION BUG 67

sophisticated, and perhaps we should think twice before laughing about the error at
Intel’s expense. In any event, it should be noted that the bug was discovered in 1994,
and chips with copyright dates of 1995 or later should be nondefective.

Acknowledgments. I owe a great deal to Tim Coe for explaining carefully and
patiently the reasoning behind his reverse engineering of the Pentium chip. This
paper began life as an extended referee’s report for the original version of the Coe–
Tang paper [6]. Without their paper and Coe’s explanation of the Pentium chip, this
work would have been impossible. I also thank Velvel Kahan for many interesting
discussions during January of 1995, while I was visiting Berkeley, and Vaughan Pratt
for reviewing early drafts of this during June of 1995, while I was visiting Stanford.
Finally, I thank Teddy Slottow for creating the beautiful color figure.

REFERENCES

[1] R. BRYANT, Bit-level analysis of an SRT circuit, CMU technical report CS-140, CMU, Pitts-
burgh, PA, 1995.

[2] T. H. CORMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1992.

[3] At the time of writing, one collection may be found on http://www-pcd.stanford.
edu/cousins/pentium.html.

[4] T. COE, Inside the Pentium FDIV bug, Dr. Dobb’s J., 20 (April 1995), pp. 129–135.
[5] T. COE, T. MATHISEN, C. MOLER, AND V. PRATT, Computational aspects of the Pentium

affair, IEEE Comput. Sci. Engrg., 2 (Spring 1995), pp. 18–31.
[6] T. COE AND P. T. P. TANG, It Takes Six Ones to Reach a Flaw, Chinese University of Hong

Kong technical report 95-5 (61), 1995.
[7] J. FANDRIANTO, Algorithm for high speed shared radix 4 division and radix 4 square root, Proc.

8th Symposium on Computer Arithmetic, Villa Olmo, Como, Italy, Computer Society of
the IEEE, 1987, pp. 73–79.

[8] J. FIXX, Games for the Superintelligent, Doubleday and Company, Garden City, NY, 1972.
[9] D. GOLDBERG, Tutorial on Computer Division, Xerox Parc Research Center, Palo Alto, CA,

1995, preprint.
[10] W. KAHAN, A Test for SRT Division (http://HTTP.CS.Berkeley.EDU/~wkahan/srtest/srtest),

March 1995.
[11] V. PRATT, personal communication, 1995.
[12] V. PRATT, Anatomy of the Pentium bug, in TAPSOFT’95, LNCS 915, Springer-Verlag,

Aarhus, Denmark, 1995, pp. 97–107. ftp://boole.stanford.edu/pub/FDIV/anapent.ps.gz.
[13] H. P. SHARANGPANI AND M. L. BARTON, Statistical Analysis of Floating Point Flaw in the

Pentium TM Processor (http://www.intel.com/product/pentium/white11.ps), 1994.

