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Overview

• Not all PCFGs are proper (have a partition function Z = 1)

• Determining whether a PCFG is proper

• Maximum likelihood estimates of CFGs are always proper

• Weighted CFGs and Gibbs form CFGs

– these arise naturally in conditional estimation

• WCFGs define the same distributions over trees as PCFGs

• how to convert a WCFG to an equivalent PCFG

• Conditional distributions

• CRF conditional distributions are HMM conditional distributions
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Probabilistic Context-Free Grammars (1)

A PCFG is a tuple G = (N,T,R, S, p) where:

• N is a finite set of nonterminals

• T is a finite set of terminals

• R ⊂ N × (N ∪ T )? is a finite set of rules or productions

– assume G does not contain useless rules or symbols

• S ∈ N is the start symbol

• p is a function from N × (N ∪ T ) to [0, 1] that is non-zero only on

R. p(A → α) is the probability of the rule A → α.

for all A ∈ N,
∑

α:A→α∈R

p(A → α) = 1
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Probabilistic Context-Free Grammars (2)

The “probability” of a tree is the product of the probabilities of the

rules used to generate it

p(t) =
∏

A→α∈R

p(A → α)fA→α(t)

where:

• t is a parse tree and p(t) is its “probability”

• fA(t) is the number of nodes labelled A in t

• fA→α(t) is the number of times A → α is used in t
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Not all PCFGs are proper

A PCFG is proper iff
∑

t∈T

p(t) = 1 where T is the set of all trees

R =











S → S S q

S → a 1 − q











Zh =
∑

t:height(t)≤h

p(t)

= (1 − q) + qs2
h−1

so the fixed point Z = limh→∞ Zh =
∑

t p(t) satisfies

Z = 1 − q + qZ2

Z = min(1, 1/q − 1)

> 1 when p > 1/2
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Determining if a PCFG is proper

• Define a matrix M indexed by nonterminals in N

MA,B = the expected number of Bs that A rewrites to

=
∑

α:A→α∈R

p(A → α)nB(α)

where nB(α) is the number of Bs in α

• Mk
A,B is the expected number of Bs that A rewrites to in k steps

• G is proper iff each M k
A,B → 0 as k → ∞

⇔ the largest eigenvalue of M is less than 1

• Wetherell (1980) describes an efficient way of determining this
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MLEs of PCFGs are always proper (1)

• Relative frequency estimator from weighted set D of trees, where

W (t) is weight of tree t

p(A → α) =

∑

t∈D fA→α(t)W (t)
∑

t∈D fA(t)W (t)

– encompasses MLE from treebanks, and M step of EM

qA = P(A fails to terminate)

=
∑

A→α

p(A → α)P(∪i{αi fails to terminate})

≤
∑

A→α

p(A → α)
∑

i

P({αi fails to terminate})

=
∑

A→α

p(A → α)
∑

B∈N

nB(α)qB
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MLEs of PCFGs are always proper (2)

qA ≤
∑

A→α

p(A → α)
∑

B

nB(α)qB

=
∑

B

qB

(

∑

A→α nB(α)
∑

t∈D fA→α(t)W (t)
∑

t∈D fA(t)W (t)

)

qA

∑

t∈D

fA(t)W (t) ≤
∑

B

qB

∑

t∈D

∑

A→α

nB(α)fA→α(t)W (t)

∑

A

qA

∑

t∈D

fA(t)W (t) ≤
∑

B

qB

∑

t∈D

∑

A

∑

A→α

nB(α)fA→α(t)W (t)

=
∑

B

qB

∑

t∈D

f̃B(t)W (t)

where f̃B(t) is the number of non-root nodes labeled B in t.

Note that fS(t) = f̃S(t) + 1, and fA(t) = f̃A(t) for all A 6= S
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MLEs of PCFGs are always proper (3)

qA

∑

t∈D

fA(t)W (t) ≤
∑

B

qB

∑

t∈D

f̃B(t)W (t)

∑

A

qA

∑

t∈D

(

fA(t) − f̃A(t)
)

W (t) ≤ 0

But since fA(t) = f̃A(t) for A 6= S and fS(t) = f̃S(t) + 1:

qS

∑

t

W (t) ≤ 0

which implies that qS = 0
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Weighted CFGs

• A weighted CFG G is one where each rule A → α ∈ R is associated

with a positive weight wA→α. The weight w(t) of a tree t generated

by G is the product of the weights of the rules that generate it.

w(t) =
∏

A→α∈R

wA→α
fA→α(t)

Z =
∑

t∈T

w(t)

P(t) = w(t)/Z

• WCFGs can also be expressed as Gibbs or log linear models

λA→α = log wA→α for each A → α ∈ R

w(t) =
∏

A→α

exp(λA→α)fA→α(t) = exp
∑

A→α

λA→αfA→α(t)

P(t) =
1

Z
exp

∑

A→α

λA→αfA→α(t)
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Reasons for using WCFGs

• Unconstrained numerical optimization is easier than constrained

numerical optimization

⇒ numerically estimating a WCFG is easier than a PCFG

• Conditional estimation (trees given strings)

– should be more accurate for parsing (given our bad grammars)

– no closed form known (to me) ⇒ numerical methods

– there is a dynamic programming algorithm for calculating

conditional likelihood and its derivatives

• Want to impose a prior on rule probabilities or regularize

– Except for Dirichlet prior (which is conjugate to multinomial),

numerical optimization probably required

– Often easier to state priors/regularizers in log linear parameter

space λA→α
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Every WCFG dist is a proper PCFG dist

• In terms of grammars, WCFGs ⊃ PCFGs ⊃ proper PCFGs, but

these all define exactly the same probability distributions over trees

• Chi 1999’s rule probabilities for the equivalent proper PCFG:

p(A → α) =
1

ZA

wA→α

|α|
∏

k=1

Zαk
, where

ZA =
∑

t∈TA

w(t)

TA = set of trees rooted in A

PB(t) =
1

ZB

∏

A→α∈R

wA→α
fA→α(t) for t ∈ TB

⇒ many different WCFGs define the same distribution over trees

⇒ WCFGs weights are not identifiable even from treebank data
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WCFG to PCFG conversion (1)

Proposition: pB(t) = PB(t) for all B ∈ N and t ∈ TB, where

p(A → α) =
1

ZA

wA→α

|α|
∏

k=1

Zαk

pB(t) =
∏

A→α

p(A → α)fA→α(t)

PB(t) =
1

ZB

∏

A→α

wA→α
fA→α(t)

Proof by induction on the height h of t. Trivial for h = 1 (terminals)
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WCFG to PCFG conversion (2)

Suppose t ∈ TB has height h > 1, root rule is B → β and tk is subtree

rooted in kth child of t.

PB(t) =
1

ZB

∏

A→α

wA→α
fA→α(t)

=
1

ZB

wB→β

|β|
∏

k=1

∏

A→α

wA→α
fA→α(tk)

=
1

ZB

wB→β

|β|
∏

k=1

Zβk
Pβk

(tk)

=
1

ZB

wB→β

|β|
∏

k=1

Zβk
pβk

(tk) by induction hyp

= p(B → β)
|β|
∏

k=1

pβk
(tk)

= pB(t) 14



Calculating WCFG partition functions ZA

p(A → α) =
1

ZA

wA→α

|α|
∏

k=1

Zαk

Let T
(h)

A = trees rooted in A of height ≤ h

Z
(h)
A =

∑

t∈T
(h)

A

∏

A→α

wA→α
fA→α(t)

ZA = lim
h→∞

Z
(h)
A

Z
(1)
A = 1 if A ∈ T , 0 otherwise

Z
(h+1)
A =



















1 for A ∈ T

∑

α:A→α∈R

wA→α

|α|
∏

k=1

Z(h)
αk

for A ∈ N
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Conditional Distributions

• Some WCFGs define conditional distributions of trees given

strings, even though their partition functions Z diverge

S → S S; 1 S → a; 1

• Chi’s formula requires that all partition functions Z converge

• Change the WCFG weights wA→α to γ|α|−1wA→α, γ > 0

– multiplies the weight of a tree with yield y by γ |y|−1

⇒ doesn’t affect the conditional distribution

• To find a PCFG with same conditional distribution as a WCFG

1. Search for γ that makes the WCFG partition functions converge

2. Apply the Chi formula to obtain PCFG rule probabilities
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CRF cond dists = HMM cond dists

• A CRF is a WCFG ⇒ ∃ HMM with same cond dist

Y

X

CRF

Y

X

HMM

Y1

Y ′

1

x1

Y2

S

Y
′

2

x2

Y3

Y ′

3

x3
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Conclusion

• Not all PCFGs are proper (have a partition function Z = 1)

• Determining whether a PCFG is proper

• Maximum likelihood estimates of CFGs are always proper

• Weighted CFGs and Gibbs form CFGs

– these arise naturally in conditional estimation

• WCFGs define the same distributions over trees as PCFGs

• how to convert a WCFG to an equivalent PCFG

• Conditional distributions

• CRF conditional distributions are HMM conditional distributions
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