&> IEEE TRANSACTIONS ON

ENGINEERING
WRITING AND SPEECH

AUGUST 1968 VOLUME EWS-11 NUMBER 2

Published Aperiodically

Special Issue on Computer-Aided Engineering Documentation

200 033 S S L. M. Cole, Jr. 22
PREFACE ..ottt vt ttttaenaae s st tte ettt a et iie it et e e inan e, H. B. Michaelson 22
PAPERS
Hardware ,
Digitally Coded Alphanumeric Photocomposition Systemcoooiiiiiiiiii e, H. L. Bechard 23
A Very High Speed Electro-Optical-Mechanical Phototypsetting Machine S. W. Levine 31
The ARCOL/SYSIEIN ...\ttt ittt it e i it C.J. Makris 35
Software
A Natural Language Programming System for Text Processing M. P. Barnett and W. M. Ruhsam 45
Editing and Type Composition of Two-Dimensional Mathematical Text via Computer ..M. Klerer and F. Grossman 53
Computer-Aided Publications Editoro i i i i i A. Kaiman 65
Experimental Studies in Computer-Assisted Correction of Unorthographic Text E.J. Galliand H. M. Yamada 75
The FORMAT PIOZIAIL . ..ottt ittt ittt et ie sttt a e e e iiaaiasen s G. M. Berns 85
SCRIPT, An On-Line Manuscript Processing System oiinin.. S. E. Madnick and A. Moulton ~ 92
The Use of Standardized Documentary Data in Automatic Information Dissemination G. Salton 101
ABACUS—AB Atomic Energy Computerized User-Oriented Services: The Mechanization of Bibliographic List
ProdUuction ottt ittt e e et e B. V. Tell 110
Chinese Mathematical Text Analysis G. L. Walker, S. Kuno, B. N. Smith, and R. B. Holt 118
Systems
Automated Typesetting of Existing Computer Tabular Dataccoiiiiii L, J. J. Boyle 129
A Time-Shared Automatic Data Retrieval and Composition System oia... G. H. Lambert 134
Some Possible Effects of Computer Composition Technology on Technical Book Publication L. Shatzkin 140
145

CONTRIBUTORS & .t it ittt ittt it et st o ta o as o tomnsouansososoeontsssassasassossssoatsnossesenasesssons

92 IEEE TRANSACTIONS ON ENGINEERING WRITING AND SPEECH, VOL. EWS-11, NO. 2, AUGUST 1968

scrirT, An On-Line Manuscript
Processing System

STUART E. MADNICK anxp ALLEN MOULTON

Abstract—The script commands of the IBM CP67/CMS system
provide interactive creation and editing of manuscript text, and
can format and output hard copies. The primary goal of scrieT
was a convenient method within an on-line system to permit pro-
grammers to prepare and maintain system documents. The scripT
commands have, however, also been used extensively to prepare
technical reports and papers of all kinds.

The epit module creates and operates upon a file in secondary
storage. Lines of text from the typewriter terminal are put into
canonical form and added to or inserted in the file. Editing in-
structions can reference a line either by context or relative line
number, and can change strings within the line to other strings,
as well as retype, delete, or insert whole lines.

The prinT module formats the manuscript file and outputs it
to either the typewriter or line printer. Lines are left and right
justified by adding additional embedded blanks where necessary.
A logical topology data structure correctly interprets overprint-
ing characters. Format control Iines may be inserted in the text
to specify such additional features as heading lines, line length,
page length, page numbering, centering, indentation, and double
spacing. The design of a follow-on system with major changes in
each of these areas is discussed (see Fig. 5 of the text).

]I. INTRODUCTION

HE scripT! system provides both on-line interac-
Ttive editing and manuscript formatting. In earlier

systems editing and formatting have usually been
approached separately. Most systems for automatic for-
matting by computer, such as TEXT/90 [10], were designed
for book publication and require specialized equipment
and manually prepared input. Editing systems, on the
other hand, have been directed primarily toward creating
and modifying card-image program and data files, elimi-
nating the inconvenience of handling and storing large
numbers of punched cards. With the advent of time-shar-
ing systems, elaborate file systems, and low-cost comput-
ers, there has been considerable activity in on-line editing.
Early work was done by Samuel [3], Edwards [5], and
Daley [8]. More recently, sophisticated techniques have
been demonstrated by Murphy [1], Deutsch [2], and
Sampson [12].

Manuscript received March 29, 1968; revised April 24, 1968.

S. E. Madnick is with the Sloan School of Management, Massa-
chusetts Institute of Technology, Cambridge, and the Cambridge
Scientific Center, IBM Corporation, Cambridge, Mass.

A. Moulton is with the Department of Political Science, Massa-
chusetts Institute of Technology, Cambridge, and the Cambridge
Scientific Center, IBM Corporation, Cambridge, Mass.

*The SCRIPT program is available only as a component of the
CP67/CMS system, which is an IBM type III program.

There have been several attempts to combine editing
and formatting, ranging from elaborate typewriter ma-
chines to large dedicated computer systems. The outstand-
ing efforts have been Saltzer [7], Mathews [4]1, Zyrl [6],
and Refs. [9], [11]. The design objectives of these combined
edit-format programs, however, have not fully employed
the technology demonstrated in the separate areas. The in-
dependent automated typesetting systems and on-line edit-
ing systems are designed for specialized users: in the first
case, specially trained publications staff, and the latter,
sophisticated programmers. Most of the combined
editing—formatting systems are directed toward augmenting
the ‘secretary. In this they essentially mimic an elaborate
typewriter mechanism and might be considered compara-
ble to mechanical devices of such nature [15].

The scrIPT system provides the nonclerical user of a
general purpose time-sharing system, CP67/CMS [17]
with the capabilities of a computer-based editing and for-
matting system. SCRIPT was originally designed to aid in
up-to-date documentation of the time-sharing system itself.
In use for more than a year, it has been found applicable
to a wider range of problems. The time-sharing system is
used by scientists and engineers, as well as applications
and systems programmers. These users often wish to write,
modify, or examine reports and documentation at arbi-
trary, unscheduled times. Without an on-line manuscript
maintenance system many of the minor but valuable re-
ports and modifications to documentation would not be
made—because of the inconvenience or delay often en-
countered in secretarial schedules and document reproduc-
ing centers. SCRIPT is simple to use and powerful enough
for the user to be willing to interrupt an on-going activity
at the terminal, write or modify a document, and return to
his other work.

In designing and constructing the SCRIPT system within
the framework of an existing time-sharing system, it was
necessary to use the technology from both editing and for-
matting to develop new techniques needed for the com-
bined system. In particular, procedures were devised for
efficient file access and text buffering, string processing,
and placing input in canonical form. Equally important
was the selection of powerful yet convenient command lan-
guages for editing the text and controlling the automatic
formatting process; many ideas from = Saltzer’s
TYPSET/RUNOFF were used in this area. Finally, a logical
topology data structure was used to assist the formatting
and effect the different requirements for output to the type-
writer terminal or line printer.

MADNICK AND MOULTON: SCRIPT MANUSCRIPT PROCESSING SYSTEM 93

II. scRIPT SYSTEM
System Description ‘

The SCRIPT system consists of two modules, the “editor”
and the “printer.” The editor is used to create and operate
upon a line-marked file from secondary storage. Lines of
text from the typewriter terminal are put into canonical
form and added to or inserted in the file. Edit instructions
reference a line either by content or relative line number,
and can change strings within the line to other strings, as
well as retype, delete, or insert whole lines.

The printer formats the manuscript file under the direc-
tion of format commands in the text. The input text from
the editor consists of free-format lines 1 to 132 characters
in length. Under normal operation, “fill” mode, the text is
rearranged by “spilling” words back and forth between the
original input lines to balance the line length; additional
embedded blanks are then added where necessary to left
and right justify lines to a designated length. The format
command lines specify additional features such as heading
lines, line length, page numbering, centering, indentation,
spacing, and others. The formatted output may be printed
on either the user typewriter terminal or the high-speed
line printer.

Entering Text from the Terminal

The editor accepts commands from the terminal and
immediately acts upon them. A basic concept is the “cur-
rent-line” pointer. The file may be considered a linear se-
quence of lines with a pointer which may be moved for-
ward or backward within the file, but at each instance is
positioned before, after, or on a specific line—the current
line. The EDIT requests are of two types, those that operate
on the current line and those that reposition the pointer.

The INPUT command is used to create a new file or in-
sert text within an existing file immediately after the cur-
rent line. It specifies that all further lines are to be treated
as raw text. The pointer is adjusted to each new line as en-
tered. A null line (two consecutive carriage returns)
causes resumption of the editor command mode.

Typographical errors may be corrected on the line being
typed by use of the “line erase” and “character erase”
characters. The line erase character, normally the cent
sign, specifies that all previous characters on the line are to
be ignored. The character erase character, normally the
commercial “at” sign, indicates that the immediately pre-
vious character is to be ignored. Multiple character erase
characters may be used to delete a corresponding number
of characters. When the carriage return is pressed, the line
is edited to resolve the line erase and character erase char-
acters.

Basic Editing Features

The REPLACE command deletes the current line and re-
places it with the new line entered. The NEXT, PRINT, and
DELETE commands move the pointer a designated number
of lines forward. The PRINT command prints the lines as
the pointer advances, the DELETE command deletes the

lines as the pointer moves. The BOTTOM command moves
the pointer to the last line of the file, prints the line, and
enters INPUT mode. The ToP command places the pointer
before the first line of the file.

The QuIT, FILE, and KEEP commands affect the entire
file. The original file is not immediately altered during the
editing process. The QUIT command terminates editing,
leaving the original file intact and deleting the edited file.
The FILE command terminates processing, but saves the
newly edited file under the name designated; it may re-
place the original file or be saved as a separate file. The
KEEP command is used to split the edited file into two or
more separate files.

The EpiT command keywords, such as REPLACE, need
not be typed in upper case; furthermore, they may be ab-
breviated as a single letter.

Context Editing Features

The cHANGE command specifies two character strings;
the current line is searched for the first string, which is
then replaced by the second. For example, if the current
line is “Boston is the home of the bean and the cod,” the
command “CHANGE /cod/sheep/” will change the current
line to “Boston is the home of the bean and the sheep.”

The general form of the CHANGE command is:

CHANGE % stringl %string2% (option)

where ‘%’ is any nonblank character that does not occur
within string 1 or string 2. The option allows specification
of the scope of the CHANGE. Ordinarily only the first oc-
currence of string 1 is changed, but it is possible to desig-
nate that all occurrences on the current line, a specified
number of following lines, or all following lines be altered.

Although the NEXT command allows positioning of the
current line pointer on the basis of line number, this is
often not convenient, since line numbers constantly change
as the file is being edited. The SEEK and LOCATE com-
mands reposition the pointer on the basis of the line’s
content rather than position. Both commands specify a
character string. Starting from the current line, the pointer
is advanced until a line containing the designated character
string is found.

Verification of Editing

With manually prepared manuscripts, corrections may
be made in a variety of ways, but eventually it becomes
necessary to completely retype whole pages or the entire
manuscript. This can be annoying, since new mistakes in
spelling, punctuation, or omission often occur in retyping.

Ideally, on-line editing systems avoid this problem, since
only the actual corrections need be typed. But it has been
truthfully stated that “computers allow for bigger mistakes
than ever conceived by humans.” Inserting or deleting a
line at the wrong place, for example, can occur via com-
puter editing,

The scRIPT system provides verification of editing in
several ways. By designating “verify” mode, all alterations

]

e

i

B

94 IEEE TRANSACTIONS ON ENGINEERING WRITING AND SPEECH, AUGUST 1968

by the cHANGE command are displayed at the typewriter
terminal. The PRINT command allows inspection of the
edited input text. Finally, one or more designated pages
may be formatted and printed. Since the original file re-
mains unchanged, if an “uncorrectable” mistake has been
made, it is always possible to revert to the original and
restart.

Text Storage and Buffering

The scripT text file is kept on secondary storage as a
blocked line-marked file. A line-marked file consists of se-
quences of line-length indicators followed by data. It is
equivalent to a tape file consisting of variable-length rec-
ords. The editing process involves three sequential disk
files: 1) the original text file, 2) a scratch file, and 3) an-
other scratch file. On the first pass, as the pointer is ad-
vanced through the file, input is read from file 1, edited
and/or merged with input from the typewriter and written
onto file 2. For the second, and all further passes, files 2
and 3 are alternately used for input and output. The line-
marked file organization allows only forward sequential
processing.

To reduce the input/output load for multi-pass editing
and to allow moving the current-line pointer backward,
text is buffered in main storage; approximately 160 000
bytes are at present available. Each line is made into an
element of a two-way threaded list as illustrated in Fig. 1.

As lines are read from secondary storage or the termi-
nal, they are added to the end of the list. When a deletion
or insertion is made, only a few pointers within the list
need be altered; see Fig. 2 for an example.

Text is written out only when there is insufficient stor-
age to accommodate the new line read from the file or
typewriter. Manuscripts of up to 20 pages in length can be
processed without requiring intermediate input/output.
For convenience, as well as efficiency, manuscripts longer
than 20 pages can be subdivided into separate files, where
each file is a logical entity such as a chapter.

Canonical Form of Input

Each new line entered from the typewriter is put into
canonical form with respect to underlined and overprinted
characters. The need for a canonical form is illustrated in
Table I.

Often, underlined text is entered by typing the line,
backspacing to the first character, and then typing the un-
derscores. To locate a line by content, it is desirable to
specify only the minimum unique character string. In
Table I, each of the LOCATE character strings are logically
contained on the target line, but physically might be stored
as different character strings. To eliminate this difficulty,
all lines are stored internally in the form of character
string 3) in Table I.

Several efficient algorithms for converting input lines to
canonical form were developed. The technique currently
used in the SCRIPT system is illustrated in Fig. 3.

LENGTH FORWARD-POINTER

FLAGS BACKWARD~POINTER

GHARACTER STRING

Fig. 1. Threaded-list element.

LINE 1 LINE 1

LINE 2 LINE 2

LINE 3 LINE 3

END LINE 5 LINE 5 END
e

Fig. 2. Sample rearrangement of threaded list.

LINE 25

TABLE I

NEeeD FOorR CaNONICAL ForM

(The characters “« * represent backspaces.)

Target line: 1) SCRIPT« « « « « ____ _

LOCATE character strings: 2) SCR« « « _ . _
or: 3) S« _Ce _Re _

The conversion to canonical form involves three steps.

1) For each character of the input line, its “dual” is de-
termined. The dual might be viewed as a number designat-
ing the column in which the character is logically to occur.
Backspace characters are assigned a dual value of zero.
The algorithm for calculation of the duals is Jlustrated in
Fig. 3(a) and 3(b-1).

2) Treating each character and its dual as a single
entry in a table, the table is sorted using the dual as the
key. In the process of sorting, backspace characters (dual
value of zero) are discarded and characters with the same
dual value are arranged according to lexigraphical order
(see Fig. 3(b-2)). This last point is made to standardize
character strings, such as, “O (backspace) /” and ¢/
(backspace) O”.

3) The canonical input line is then formed from the
sorted input line by placing a backspace between charac-
ters with the same dual value, as shown in Fig. 3(b-3).

MADNICK AND MOULTON: SCRIPT MANUSCRIPT PROCESSING SYSTEM 95

=0 TABLE II
1=0 PRINT REQUEST PARAMETERS
l default on-line typewriter output
I=T+1
l default continuous form paper
stop (ST) single page paper

ofFfLINE (OF) off-line printer output

TRANSLATE (TR) printer without full character set

CeNTER (CE) align to center of wide printer paper

=141 . R
D=0 \7/ B0)-I PAGE XXX print starting at page xxx
(a) ‘ TABLE III
1 9 3 4 5 6 7 List oF PRINT FORMAT COMMANDS)
1)INPUT Page Format
LINE: e/ e el |0 pln set page length to n
DUAL:
L2z 3 ooz g3 .bm n set bottom margin to n
1z 3 45 .tmn set top margin to n
2)SORTED
INPUT: [I R I 4 Spacing
.ds enter double-space mode
DUAL:
122]3]3) |
.58 enter single-space mode .
1 2 3 4 5 6 7 . ‘
.sp (n) skip n blank lines |
JCANONICAL P o el /s |
INPUT - Paragraph Format |
Aln set line length to n |
(b & |
Fig. 3. (a) Algorithm to calculate dual. ’ dnn indent all following lines n spaces

(b) Steps to form canonical input.
.ofn offset n spaces

Page Control
.pa (n) eject to new page immediate, print heading and
In the printer, the manuscript file is formatted and page number
printed on either the typewriter terminal or high-speed
printer. The formatting is controlled explicitly by two fac-

Basic Text Formatting Features

.pn'mode enter designated page numbering mode

tors: 1) parameters of the PRINT request, and 2) format .he heading set page heading
command lines embedded within the text. The rules of for-
matting under “fill” mode also implicitly affect the result Format Mode
as described above .br do not “fill” between the immediately preceding
’ . . and following lines
The PRINT request parameters designate certain global
dispositions, such as output device type and/or selective i enter “A11” mode
output. These parameters are itemized in Table II with
their abbreviations. -nf enter “nofill” mode
The PRINT format command lines provide detailed spec- .
. . R . .ce center the next line
ifications on manuscript layout. The command lines may
be placed anywhere in the text and take effect immediately Special Features
during formatting. .rd (n) accept next n lines from typewriter
Rather than supplying a limited number of “format o)
.cpn page eject if within n lines of bottom margin

modes,” the commands are very basic. A large number of

complex layouts may be built up by using a sequence of Manuscript Layout

these basic formatting commands. The present commands .ap name accept further input from file “name”
are listed in Table III; they should be self-explanatory. _ . .
They are grouped according to normal use, but may be used -im name imbed input from file “name” and then resume

. i original input stream
in combinations to produce far more general effects. gina’ 1opu* §

Inserts and Complex Layout Specifications

The append and imbed features were conceived as a
means to connect manuscripts that had been subdivided
for editing efficiency. In practice, these control features
have been extremely useful for a variety of purposes. Some
of the more common arrangements include:

1) incorporating “standard” paragraphs or sections into
several different manuscripts;

2) separating a document into company confidential
sections and nonconfidential sections, and using two or
more master SCRIPT files to pull together the appropriate
pieces;

3) collecting often-used complex sequences of format
control words that can then be used as a “macro” by
imbedding to specify complex layouts or standard para-
graph forms.

Logical Topology Data Structure

Most of the operations of the printer use straightfor-
ward, conventional programming techniques. The major
obstacle is processing the fill mode, complicated by the
presence of underscored and overprinted characters. Fur-
thermore, the mechanisms available for overprinting are
significantly different in the typewriter terminal and in the

line printer. To overcome these interrelated problems, an
intermediate data structure organization is used to repre-
sent the logical topology of the line being formatted.

Each character of an input line is converted into a link
element as shown in Fig. 4(a). The link elements are con-
nected as illustrated in Fig. 4(b). Note that backspaces do
not explicitly appear in the topological structure.

96 IEEE TRANSACTIONS ON ENGINEERING WRITING AND SPEECH, AUGUST 1968

Two passes over the primary line are needed to justify
the left and right margins. During the first pass the pri-
mary line is scanned up to and including the last complete
“word” (group of nonblank characters separated by
blanks) contained within the length desired for justifica-
tion. The number of words is determined along with the
number of spaces remaining between the last word and the
required line length. Dividing the number of spaces needed
by one less than the number of words produces the num-
ber of extra spaces to be inserted after each word for cor-
rect justification. Unfortunately, it is not possible to insert
fractional spaces. Fractional components are, therefore,
accumulated until at least a half space accrues (see Table
IV). When a half space accumulates, a whole space is in-
serted into the line and subtracted from the accumulated
sum of fractions.

The second pass is required to record the added spaces.
Each link element contains a multiplier field initially set to
one. During the second pass the multiplier for the ap-
propriate blank link elements is increased without altering
the data structure.

CHARACTER
MULTIPLIER

FORWARD-POINTER
DOWNWARD-POINTER

()

CANONICAL INPUT LINE: AB<—— _ 0 < /
TOPOLOGICAL STRUCTURE:

A —== B

Only the top level of the topological structure, the “pri-
mary line” (the characters ABO in Fig. 4(b)), is in-
volved in formatting. Sufficient text lines are read to keep — /
the number of characters in the primary line greater than (b)
the designated output }me length. An implicit blank is in- Fig. 4. (a) Link element. (b) Logical
serted between successive text lines. topology structure.
TABLE 1V
JUSTIFICATION
(The character “.” represents a blank.)
|l<m - - - Desired Length — — — — — = — = = — — = >|
1 2 3 4 5 6 7 8 910111213 14 15 16 17 18 192021 22 23
A B CcC D E F GHI J X L . M NOPR
ke e > e m > Km—m— > <mm = = Ko —— = > <>
1 2 3 5 6
Desired Line Length =20
Number of Complete Words—1=35
Number of Spaces Needed =2
Number of spaces to be inserted between every word=0
Number of Extra Spaces per Word=2/5 or 4/10
e it Desired Length — — — = — — = — — = — = >|
1 2 3 4 5 6 7 8 910111213 14 15 16 17 18 1920
A B . CD . . EF.GHI . . J KL .M
(4/10) (8/10) (2/10) (6/10) (0)

MADNICK AND MOULTON: SCRIPT MANUSCRIPT PROCESSING SYSTEM 97

The logical topology data structure is sufficiently flexible
to be extended for a variety of other facilities, such as in-
terpreting “tab” characters. Similarly, the second pass of
the justification process can be altered to allow other dis-
tributions of the additional blanks, such as collecting
blanks after end of sentence periods.

The logical topology data structure plays an important
role in generating the correct output form. For the type-
writer, the structure is “unfolded” all at once, inserting
backspaces in front of the downward characters and ad-
justing for the multiplier. For the line printer, it is possible
to print only a single line at a time. Overprinting is ef-
fected by printing multiple lines without advancing the
paper. This is accomplished by “peeling” the data struc-
ture one level at a time, starting with the primary line.

II1. FoLLow-ON SYSTEM

The present SCRIPT system was designed for the specific
and somewhat limited objectives described in the Introduc-
tion. Modular construction has allowed expansion of the
system in an organized manner. The present system is,
therefore, the culmination of an adaptive process.

The evolution of the SCRIPT system has revealed limita-
tions and shortcomings in present-day manuscript process-
ing systems. Very recent and mostly unpublished work,
such as Ken Thompson’s regular expression algorithm
[22], presents new concepts for on-line manuscript pro-
cessing.

Many of these innovations are planned for the follow-on
SCRIPT system now in its early stages (see Fig. 5). Princi-
- pal concerns in the new design have been: 1) a more pow-
erful and flexible editor command language, 2) the ability
to edit a number of files at once, 3) stored editor pro-
grams, 4) floating format commands, and 5) a much more
powerful pattern-matching mechanism.

The increased availability of special output devices, such
as character display scopes and photocomposers, allows
some interesting applications with no fundamental addi-
tional problems.

Command Language

The principal design criterion of the new command lan-
guage was convenience of use. The main points were:

1) allowing several commands to be placed upon a sin-
gle input line

2) shortest reasonable mnemonic names for commands

3) adaptability to user preferences

4) prevention of nuisances, particularly required up-
per-case characters

5) flexibility.

Most commands have the form:

address,addresscommandarguments

meaning “perform the command with the arguments speci-
fied on each line between the two addresses.” If only one
address is given the command is performed only upon the
indicated line. An address may be either

1) a line number

2) the character ¢, meaning the current line
3) afunction whose value is a line number

4) an address plus or minus an address.

The address function, denoted by slashes surrounding a
search string, searches the text following the current line
for the specified string, returning a value which is the num-
ber of the line where the first match occurred. Hence, to find
the first line after the current line which contains the string
‘bean’, and change the string ‘Boston’ on that line to the
string ‘Cleveland’

/bean/substitute/Boston/Cleveland/
Buffers

Buffers are text receptacles. One might conceive of the
text in each buffer as a single-dimension stream of charac-
ters or lines, and the set of buffers as multi-dimensional.
Some buffer is always designated the “current buffer.” The
current buffer is analogous to the current file of the present
SCRIPT editor. The other buffers may be considered auxil-
iary collections of text, which may be loaded from the cur-
rent buffer, or inserted into a text stream. These two oper-
ations—*“loading” and “expanding”—are the only ones
permitted upon auxiliary buffers. This restriction arose
from the desire to hold the number of arguments of editor
commands to a minimum. Most commands, therefore,
imply that the operation is to be performed upon the cur-
rent buffer.

Before a manuscript is edited the text must be read into a
buffer from a file. The reading operation is really more a
logical than a physical operation. Although the system at-
tempts to keep as much text as possible in core, large
manuscripts can easily exhaust the available space. One
solution to this problem would be to restrict the user to ed-
iting only a limited amount of text at a time. That is, the
user would manually page the text to be edited into and
out of buffers. We have decided to let the system automati-
cally do this paging. When space is scarce, a buffer is at-
tached to a disk file, and some of the text logically in the
buffer is paged out onto the disk file. To hold down the
time for the reading operation, only a portion of the file is
actually read into the buffer. The rest is left in the file,
which is logically appended to the end of the buffer.

To conserve both storage and time we employ a hierar-
chy of data structures. The current line is the most likely
to be accessed. Each current-line character is therefore
stored with forward and backward pointers to allow easy
manipulation. All other text in core is maintained in
strings with forward and backward pointers and a charac-

98 : IEEE TRANSACTIONS ON ENGINEERING WRITING AND SPEECH, AUGUST 1968

LINE
USER PRINTER
TERMINAL

/4N

COMMAND
PROCESSOR

J

FORMATTER

<

CANON- LRI
COMMAND
ICALIZER PROCESSOR
CEXT TEXT BUFFERS
¥ rLow
CONTROL
=== oW
TEXT AND
== OMMAND DISK
Low FILES

MADNICK AND MOULTON: SCRIPT MANUSCRIPT PROCESSING SYSTEM 99

ter count. Text out on disk, however, is kept in packed-
character format.

Command Language Implementation

The interpreter scans the command input stream from
left to right, processing each address and command as it is
encountered. Addresses are calculated and pushed on top
of an address stack. When a character that cannot be the
beginning of an address is encountered, the interpreter
compares this character and those following with entries in
the command name table. The longest names in the table
are matched first (this allows long names to begin with the
same sequence as shorter names). When a match is
found, the interpreter calls the designated command pro-
cessor after removing the command name from the com-
mand stream. Each command processor examines the ad-
dress stack for the addresses required for its task and
removes its arguments from the command stream. After
completion of a command the addresses collected before
its execution are removed from the address stack. A com-
mand allows the user to redefine entries in the command
table and thus to name commands in the way easiest for
him to remember.

Editing Programs

Since the new scripT editor is a general text manipula-
tor, one may wish to write text manipulation functions in
the scripT command language. If one allows the expansion
of a buffer into the command input stream, editor pro-
grams have been effected. To fully generalize this process
one only needs a recursion stack. Each frame on the recur-
sion stack indicates the previous source of the command
input stream. To allow programs to be a bit fancier (and
probably more efficient), labels, “go to” statements and con-
ditionals are added. Each of these is carried out as an edi-
tor command. The “go to” command searches text in the
current buffer and all predecessors on the recursion stack
for the specified label definition.

Debugging editor programs often becomes a necessity. To
help debug a mode may be set to cause the editor to type a
message at each change in the recursion level; and the
trace command causes the relevant information from the
recursion stack to be typed out in inverse chronological
order.

Editor Programs at Format Time

New format commands allow editing programs to be
imbedded in the manuscript itself. These editing programs
are executed when they are encountered in formatting the
manuscript. This allows the contents of buffers to be
changed during formatting. One intended use is placement
of footnotes. When the user refers to a footnote, he uses
the editor to add the footnote text to the footnote buffer.

The system formats the text as it is added to the buffer and
inserts this formatted text when the bottom of the page is
sufficiently close, emptying the buffer afterwards.

With the arithmetic features of the editor, running foot~
note numbers can also be maintained. These numbers may
be inserted into the text by a number-to-text conversion.

Floating Formatting Commands

Formatting commands may be interspersed freely in
text. The only logical difference between floating command
requirements and the current requirement that formatting
commands must appear at the beginning of lines is that the
floating commands may reasonably occur in the middle of
a “word.” The present requirement of a new line would
cause a blank to be inserted, terminating the “word.” The
advantage to the new system comes from the greater com-
pactness of the notation and the removal of the focus on
lines as the principal subunit of the file. One result of this
change of focus is the allowance of multiple-line headers.
A floating formating command begins the header collection
and another closes it.

Floating command coding requires setting aside a char-
acter (known as a “kludge” character) to denote a format-
ting command. We chose the percent sign for this purpose.
Note that escape conventions [21] allow overriding the
special meaning of the percent sign for use in text.

The header can be set to the string TITLE on one line
and DATE on the next by the following:

% g(header) TITLE %bDATE % *

The formating command “group” (%g) interprets the
characters within parentheses immediately following the g

as a buffer name. The text following the right parenthesis

up to the “terminate” (%%*) command is formatted and
placed in the designated buffer. The “break” command
(%b) has the effect of a carriage return, causing TITLE
to be formated on a separate line from DATE. At the top
of every page the system outputs the contents of the buffer
named ‘“header.”

Pattern Matching

In the present SCRIPT system only simple strings may be
located or changed. It would, however, often be advanta-
geous to have a pattern matching capability like that of
sNoBoL [14], [18], [19]. Thompson’s regular expression
compiling algorithm [22] satisfies this need. A regular ex-

pression describing the string to be matched is compiled
into machine code; the code is then executed, returning ei- "

ther the string found or a failure. Experience with QED
[16] on the 7094 has proven this method very efficient.
The usual regular expression operators—alteration (I),
repetition (*), and concatenation (implied)—as well as
parentheses, are allowed. Operands may be either ordinary

100

TABLE V

SpPECIAL CHARACTERS

Character Meaning
. matches any character
¢a matches any alphabetic character
¢n matches any numeric character
$ matches the character after the end of the line
@ matches the character before the beginning of the line

- or special characters. Some of the special characters are
shown in Table V.

Escape conventions permit referencing these characters
with their usual meaning, and the extension of the charac-
ter set. The string “¢c.” (an escaped period) matches only
a period; “¢a” (escape-a) is an extended character.

The use of regular expressions for representing patterns
_ does not complicate the simple tasks served by string pat-
terns—a string is still represented as a string. Regular ex-
pressions simply add the capability to specify 1) classes of
characters, 2) the “or” of several characters, strings, or
expressions, and 3) the indefinite repetition of a character
or expression. These capabilities allow matching awkward
strings without typing explicit characters on the line: for ex-
ample, mispelled words (‘algorythmm’ would be matched
by ‘algo.*m’), sentences (matched by ‘.*¢c.”), or the first
three characters on the line (‘@...%).

IV. CoNCLUSIONS

The basic components to develop on-line manuscript
processing systems have existed for some time. Recently
there has been considerable commercial and academic in-
terest in developing such systems. Unfortunately, primarily

- because of lack of published information, many of these

projects have unintentionally “reinvented the wheel.” This
paper describes the design and development of a conve-
nient and comprehensive manuscript processing system,
and points out desired features for more advanced systems
as guidelines for future exploration.

IEEE TRANSACTIONS ON ENGINEERING WRITING AND SPEECH, AUGUST 1968

REFERENCES

(11 D. Murphy, “TECO,” Bolt Beranck and Newman, Cam-
bridge, Mass., Memo, November 1966.

[2]1 L. P. Deutsch and B. W. Lampson, “An online editor,”
Commun. ACM, vol. 10, pp. 793-803, December 1967.

[3] A. L. Samuel, “A new editing program,” MIT Project MAC,
Cambridge, Mass., Memo. MAC-M-167, June 1967.

[4] M. V. Mathews and J. E. Miller, “Computer editing, type-
setting, and image generation,” Proc. Fall Joint Computer
Conf., 1965.

[51 D. J. Edwards, “TECO 6,” MIT Project MAC, Cambridge,
Mass.,, Memo. MAC-M-191, October 1964.

[6] M. M. Zryl and A. P. Mullery, “Text editing on the APL/
360 terminal system,” IBM Watson Research Laboratories,
Memo., July 1967.

[7]1 1. H. Saltzer, “TYPSET and RUNOFF, memorandum editor,
and type-out commands,” MIT Project MAC, Cambridge,
Mass., Memo. MAC-M-193-2, January 1965.

[81 R. C. Daley, “ED, a context editor for card image files,”
MIT Project MAC, Cambridge, Mass., Memo. MAC-M-195,
November 1964.

[91 IBM Corporation, “Introduction to DATATEXT,” Form
J20-0011.

[10] IBM Corporation, “TEXT/90,” File 7090-ZO IBM 0022ZO.

[11] IBM Corporation, “Administrative terminal system (ATS),”
Form H20-0185-1.

[12] P. Sampson, “PDP-6 TECO, July 1965 version,” MIT Proj-
ect MAC, Cambridge, Mass.,, Memo. MAC-M-250, July
1965.

[13]1 J. J. Corbato et al, The Compatible Time-Sharing Sys-
tem, A Programmer’s Guide (Memo. Ditto, Modify Com-
mands), Cambridge, Mass.,, MIT Press 1963.

[14] 8. E. Madnick, “String processing techniques,” Commun.
ACM, vol. 10, pp. 420-424, July 1967.

[15] IBM Corporation, “Magnetic Tape Selectric Typewriter”
Training Guide, Form 543-0503-1.

[16] K. Thompson, “QED as of 8/5/67,” Bell Telephone Labora-
tories, Murray Hill, N.J., Memo. B0088, August 1967.

[17] IBM Cambridge Scientific Center, “CP/CMS user’s guide,”
Cambridge, Mass., Rept. 320-2015, October 1967.

[18] S. E. Madnick, “SPL/1: A string processing’ language,”
IBM Cambridge Scientific Center, Cambridge, Mass., Rept.
36.006, June 1966.

[19] D. J. Farber, R. E. Griswold, and I. P. Polansky, “SNOBOL,
a string manipulation language,” J. ACM, vol. 11, January
1964.

[20] W. D. Mathews, “EDIT, An online string manipulator,” MIT,
Cambridge, Mass., Project TIP Memo., March 1968.

[21] “Escape conventions,” Multics System Programmer's Manual,
Section BC2.04, MIT Project MAC, Cambridge, Mass.

[22} K. Thompson, “Regular expression search algorithm,” Com-
mun. ACM, vol, 11, pp. 419-422, June 1968.

