Dataspaces: The Tutorial

Day 2

Alon Halevy, David Maier VLDB 2008 Auckland, New Zealand

Outline

- ✓ Dataspaces: why? What are they?
 - Examples and motivation
- Dataspace techniques:
 - √ Locating and understanding data sources
 - Creating mappings and mediated schemas
 - Pay-as-you-go: improving with time
 - Querying dataspaces
- Research challenges on specific dataspaces:
 - Science, the desktop, the Web

Sub-Outline

- What are schema matches and mappings?
 - Why is it so hard to create them?
- Automatic techniques for creating them
- Probabilistic schema mappings
- Probabilistic mediated schemas
- Trails: mapping hints

Why is it so Hard?

- Schemas were developed in different contexts for different purposes
- Schemas never fully capture their intended meaning:
 - They're just symbols and structures.
 - Descriptions are:
 - · Often missing,
 - · In plain text, or wrong, or,
 - Don't capture all the semantics

Schema Mapping Overview

- Step 1: schema matching:
 - Generate correspondences between elements of the two schemas
 - Easier to elicit from designers
 - May actually be all that's needed
- Step 2: create mappings:
 - Decide on joins, unions, filters, ...

User in the loop in both steps

See Chapter 5 of upcoming book

Sub-Outline

- √ What are schema matches and mappings?
 - √Why is it so hard to create them?
- Automatic techniques for creating them
- Probabilistic schema mappings
- Probabilistic mediated schemas
- Trails: mapping hints

Schema Matching overview

- · One trick won't do it all
- Hence:
 - Consider several base matchers
 - And then combine them
- Exploit domain constraints when possible
- We focus on 1-1 matching here
- [See Survey by Rahm & Bernstein, 2001]

Basic Matchers

- · Schema level:
 - Name, description, data type,
 - Constraints (keys, foreign keys, is-a)
 - Schema structure
- · Instance level:
 - Look for common patterns in the data
 - Often more meaningful than the schema

Example: Edit Distance

Levenshtein Distance:

Number of operations needed to transform one name to the other.

$$edSim(s_1, s_2) = 1 - \frac{edit_distance(s_1, s_2)}{max(length(s_1), length(s_2))}$$

edSim(discountPrice, discountedPrice)?

Instance-Based Matchers

- Formatting patterns in the data can reveal type:
 - E.g., dates, phone numbers, prices, addresses, names, ...
- What other attribute names were used elsewhere for such values?
 - Additional clues to name matcher
- Consider similarity in values & type between two columns
 - E.g., house price versus # of rooms

Sub-Outline

- √ What are schema matches and mappings?
 - √Why is it so hard to create them?
- ✓ Automatic techniques for creating them
- Probabilistic schema mappings
- Probabilistic mediated schemas
- Trails: mapping hints

Probabilistic Schema Mappings

- In a dataspace, we may rely on automatically created schema mappings
 --> uncertainty
- How do we model uncertain mappings?
- How do we answer queries in their presence?

Probabilistic Mappings

[Dong, H., Yu, VLDB 2007]

- S=(pname, email-addr, home-addr, office-addr)
- T=(name, mailing-addr)

Possible Mapping	Probability
{(pname,name),(home-addr, mailing-addr)}	0.5
{(pname,name),(office-addr, mailing-addr)}	0.4
{(pname,name),(email-addr, mailing-addr)}	0.1

Semantics? by table or by tuple?

Complexity of Query Answering By-table By-tuple **PTIME Data Complexity** #P-complete Mapping Complexity **PTIME PTIME** Works for Results extend compressed to more PTIME for representations complex important of mappings mapping special cases too. languages.

Sub-Outline

- √ What are schema matches and mappings?
 - √Why is it so hard to create them?
- ✓ Automatic techniques for creating them
- ✓ Probabilistic schema mappings
- Probabilistic mediated schemas
- Trails: mapping hints

Creating the Mediated Schema

[Das Sarma, Dong, H., SIGMOD 2008]

- Mediated schema creation: up front effort.
- Can we create it automatically?
 - If we can, then we can completely bootstrap data integration.
- Probabilistic mediated schemas:
 - manage the uncertainty involved.

Probabilistic Mediated Schema

• A p-med-schema is a set

$$\mathbf{M} = \{ (M_1, Pr(M_1)), ..., (M_l, Pr(M_l)) \}$$
 where

- M_i is a med-schema; i≠j => M_i≠ M_j
- $Pr(M_i) \in (0,1]; \Sigma Pr(M_i) = 1$

29

Bootstrapping Data Integration

- Need to choose a mapping based on the correspondences:
 - One that minimizes entropy
- Consolidate probabilistic med schemas into one -- for the user.
- Between 0.85 and 0.95 P/R for queries on collections of 50-800 tables from the Web.

Sub-Outline

- ✓ What are schema matches and mappings?
 - √Why is it so hard to create them?
- ✓ Automatic techniques for creating them
- ✓ Probabilistic schema mappings
- ✓ Probabilistic mediated schemas
- Trails: mapping hints

iTrails: Add Integration Hints Incrementally [Vas Salles et al., VLDB 06, 07]

- Step 1: Provide a search service over all the data
 - Use a general graph data model (see VLDB 2006)
 - Works for unstructured documents, XML, and relations
- Step 2: Add integration semantics via hints (trails) on top of the graph
 - Works across data sources, not only between sources
- Step 3: If more semantics needed, go back to step 2
- Impact:
 - Smooth transition between search and data integration
 - Semantics added incrementally improve precision / recall

Defining Trails

· Basic form of a Trail

 Intuition: When I query for Q_L [.C_L], you should also query for Q_R [.C_R]

global warming zurich

Temperatures

date	city	region	celsius
24-Sep	Bern	BE	20
24-Sep	Uster	ZH	15
25-Sep	Zurich	ZH	14
26-Sep	Zurich	ZH	9

Trail for Implicit Meaning:
"When I query for global
warming, you should also
query for Temperature data
above 10 degrees"

global warming → //Temperatures/*[celsius > 10]

 Trail for an Entity: "When I query for zurich, you should also query for references of zurich as a region"

zurich → //*[region = "ZH"]

Trail for schema match on names:
 "When I query for
 Employee.empName, you should also
 query for Person.name"

Trail for schema match on salaries:
"When I query for Employee.salary,
you should also query for
Person.income"

More on Trails

- Creation:
 - Given by the user explicitly or by relevance feedback
 - (Semi-)Automatically: information extraction, schema matching, user communities, ontologies.
- Uncertainty on trails: some paths are better than others.
- Query reformulation: avoid cycles. (see paper)

Outline

- ✓ Dataspaces: why? What are they?
 - Examples and motivation
- · Dataspace techniques:
 - ✓ Locating and understanding data sources
 - ✓ Creating mappings and mediated schemas
 - Pay-as-you-go: improving with time
 - Querying dataspaces
- Research challenges on specific dataspaces:
 - Science, the desktop, the Web

Reusing Human Attention

- Principle:
 - User action = statement of semantic relationship
 - > Leverage actions to infer other semantic relationships
- Examples
 - Providing a semantic mapping
 - · Infer other mappings
 - Writing a query
 - · Infer content of sources, relationships between sources
 - Creating a "digital workspace"
 - · Infer "relatedness" of documents/sources
 - · Infer co-reference between objects in the dataspace
 - Annotating, cutting & pasting, browsing among docs
- ESP [von Ahn], mass collaboration [Doan+], active learning for record matching [Sarawagi et al.]

Learning Schema Mappings [Doan et al., 2001] Mediated schema Classifiers for mediated schema Training examples: manually created schema matches Technique: multi-strategy learning. Use different learners and combine their predictions. Used in Transformic Inc. to create thousands of mappings.

Soliciting User Feedback

[Jeffrey, Franklin, H., SIGMOD 2008]

- After bootstrapping, we need help from users to improve.
 - Reference reconciliation
 - Schema matches
 - Extractions from text
- What questions should we ask the users?

The Most Beneficial Match

Decision theory to the rescue!

→ Value of Perfect Information (VPI)

"What is the benefit of resolving an unknown?"

Intuition:

```
Benefit(match m_j) = Utility(m_j confirmed)(p_{correct}) +

Utility(m_j disconfirmed)(1 - p_{correct}) -

Utility(without asking)
```

Utility of a Dataspace

- · Focus on queries!
- 2 components:
 - Result quality
 - Query importance

$$U(D,M) = \sum_{(Q_i,w_i) \in W} r(Q_i,D,M)w_i$$

Look at allQuery resultQuery queries in theuality (eignportance workloadrecision/recall)

Challenges

- How to estimate benefit without computing all queries?
- Don't want to check all possible resulting dataspaces when a match is confirmed.
- Result: much faster dataspace improvement
 - Experiments on GoogleBase data.

Outline

- ✓ Dataspaces: why? What are they?
 - Examples and motivation
- Dataspace techniques:
 - ✓ Locating and understanding data sources
 - ✓ Creating mappings and mediated schemas
 - ✓ Pay-as-you-go: improving with time
 - Querying dataspaces
- Research challenges on specific dataspaces:
 - Science, the desktop, the Web

Looking for data management problems in the rainforest in Costa Rica

Querying Dataspaces

- We'll talk about the 'how' in a moment, but let's set expectations first.
- Recall that uncertainty is everywhere:
 - Data, mappings, query formulation
- · Hence, results need:
 - To be ranked
 - Come with their provenance & explanation
 - See tutorial by Tan & Buneman, SIGMOD 2007.
 - They won't be sets of tuples necessarily.

Query Mechanisms

- Keyword search over structured data
 - BANKS (Mumbai), Xrank (Cornell), Discover (Hristidis and Papakonstantinou), Naga (Kasneci et al.)
- Keywords as a starting point:
 - Find the relevant data source and reformulate the query
 - · Examples below
 - Find appropriate structured queries over multiple sources
 - · System Q

Outline

- ✓ Introduction
- ✓ Dataspace principles through data integration
- Research challenges on specific dataspaces:
 - Dataspaces on the Web,
 - in Science, and
 - for Personal Information Management

Dataspaces on the Web

- The Deep Web (yesterday, Madhavan et al.):
 - Millions of forms.
- · Main challenges:
 - The domain of everything
 - The context of the data carries semantics
 - Need to live with the rest of web data
- Opportunities:
 - Scale: stuff you can do with millions of schemas, forms

Issues in Science Dataspaces

Concepts are still gelling, or have multiple abstractions

E.g., Gene

- · Coding region of a chromosome
- Particular transcription and splicing of a region
- · Particular variant of the region
- Product (usu. protein) coded by the region
- Whether they should be treated the same can depend on task or even query
- Makes schemas complex

Science DS Issues, Cont.

Identification is hard

- No common identification scheme yet Hsp10, HSP10, CPN10, Yor020p, ch10_yeast [Jagadish, Chapman+ SIGMOD 07]
- Comparisons are on complex structures
 Sequence, molecule, 3-D structure
- Slight variants are different entities in rw Gene homologs

On-the-fly matching difficult
Want to reuse manual work

Scientific DS Issues, cont.

Complex schemas make query hard Michigan Molecular Interactions (MiMI)

[Jayapandian, Chapman+ Nucleic Acids Res. 2007]

- Use abstracted schema for overview (and now query)
- Multiple query interfaces: form, XQuery, keyword, MQuery (graphical)

But – "same" query gives different answers in different interfaces

The Other "DataSpace"

- What's the minimum infrastructure for initial transformation, cleaning and exploratory analysis?
- Data sets often too big to replicate, but even fast channels are hard to exploit for on-the-fly combination

[Grossman, Mazzucco IEEE Comp in Sci & Eng 2002]

Universal Keys

- Devise one or more domain-specific universal keys
- Treat data as distributed columns associated with one or more UKs
- Fast transfer and merge-join on keys; templated transform and display ops

Later version called *Sector* with more parallelism

[Grossman, U Penn II Workshop 2006]

Supporting Analysis

Scenario: Domain experts who are unfamiliar with schema, need to make equivalence judgments

- None, <1 pack, 1-2packs, >2 packs
- Never smoked, smoker, quit
- GUAVA: GUI as View Apparatus Query through the data-entry screen
- MultiClass: Save and reuse domain mapping decisions

[Terwilliger, Delcambre+ EDBT Workshops 2006]

Other Science DS Work

- Multiple Genomes and Meta-genomes
 [Markowitz U Penn II Workshop 06]
 - Have "coarse annotation" in some components while refining annotation (perhaps even manually) in others
- Science dataspaces on the Grid [Elsayed, Brezany+ DEXA 2006]
- Ontologies in science dataspaces [Ning, Wang ICPCA 2007]

Personal DS Issues

Many territorial entities in your dataspace

- Device boundaries: laptop vs. PDA
- Document boundaries: directory vs. cells
- Server boundaries: files vs. email

Desktop search doesn't solve it all.

Issue: Reconciling References

- References might have small numbers of attributes
- Not a lot of data to train on or analyze
- · References evolve
 - People move
 - Documents go through versions (think about your interview talk)

Issue: One-time Query

- Standard information integration often starts by listing frequent queries that are anticipated
- In a personal DS, you might want to ask a query once over a particular combination of sources

"What exam questions do I have that weren't in the HW, weren't on the practice exam, weren't used in class, aren't in the back of the book, aren't examples in the book?"

SEMEX: Semantic Exploration

- Extract objects and relationships automatically and cast into a personal information model [Dong, Halevy CIDR 2005]
- Reference reconciliation is critical

```
First: Mike, Last:Carey, Loc: IBM
First: Michael, Last:Carey
Last: Carey, Email: <u>carey@ibm.com</u>
Email: <u>carey@ibm.com</u>, Loc: Almaden
```

Reference Merging

Combine references, allow multivalues

```
First: Mike, Last: Carey, Loc: IBM

First: {Mike, Michael},

Last: Carey, Loc: IBM

First: Michael, Last: Carey

First: {Mike, Michael}, Last: Carey,

Email: carey@ibm.com

Loc: {IBM, Almaden}

Last: Carey, email: carey@ibm.com

Loc: Almaden

Email: carey@ibm.com, Loc: Almaden
```

Evolving Objects

- · Do fine-grained reconciliation
- Look for evidence to build chains that represent versions of objects.

Emails for Carey from ibm.com don't overlap in time with emails for Carey from bea.com

iMeMex

- You saw this previously in iTrails [Dittrich, Vaz Salles VLDB 06]
- Try to over come the document boundary

Why is the file-system directory hierarchy different than the element hierarchy in an XML document?

iMeMex Data Model (iDM)

Ask Us Questions ...

... or straighten us out

Backup Slides

And Extras

Query Answering Semantics

- Input:
 - Source S, query Q
 - P-med-schema $\mathbf{M} = \{ (M_1, Pr(M_1)), ..., (M_{\nu}Pr(M_{\nu})) \}$
 - P-mappings **pM** = { $pM(M_1)$, ..., $pM(M_1)$ }
- Output probability of tuple t:
 - $p = \sum Pr(t|M_i) * Pr(M_i)$

34

Query Answering

S1

name	hPhone	oPhone	hAddr	oAddr
Alice	123-4567	765-4321	123, A Ave.	456, B Ave

Q

SELECT name, phone, address FROM Med-S

Answers

Tuple	Probability
('Alice', '123-4567', '123 A Ave.')	0.34
('Alice', '765-4321', '456 B Ave.')	0.34
('Alice', '765-4321', '123 A Ave.')	0.16
('Alice', '123-4567', '456 B Ave.')	0.16

85

Expressive Power of P-Med-Schema v.s. P-Mapping

Theorem 1. For one-to-many mappings:

(p-med-schema + p-mappings)

- = (mediated schema + p-mapping)
- > (p-med-schema + mappings)

Theorem 2. When restricted to one-to-one mappings:

(p-med-schema + p-mappings)

- = (p-med-schema + mappings)
- > (mediated schema + p-mapping)

86

Creation: 1) Creating a Single Med-Schema

• Input: Single-table source schemas $S_1, ..., S_n$

Output: Single-table mediated schema M

- Algorithm
- 1. Remove all infrequent attributes

2. Find *similarity* between every pair of attributes and construct a weighted graph

3. Remove edges with weight below τ (e.g., τ =.5)

4. Each connected component is a cluster

Creation: 1) Creating a Single Med-Schema

Input: Single-table source schemas S₁, ..., S_n
 Output: Single-table mediated schema M

- Algorithm
- 1. Remove all infrequent attributes

2. Find *similarity* between every pair of attributes and construct a weighted graph

- 3. Remove edges with weight below τ (e.g., τ =.5)
- 4. Each connected component is a cluster

Creation: 2) Creating All Possible Med-Schemas

- Algorithm
- 1. Remove all infrequent attributes
- 2. Find *similarity* between every pair of attributes and construct a weighted graph
- 3. For each edge
 - (weight $\geq \tau + \epsilon$) \rightarrow retain
 - (weight $< \tau \epsilon$) \rightarrow drop
 - (τ-ε ≤ weight < τ+ε) → uncertain edge

(e.g.,
$$\tau$$
 =.6, ϵ = .2)

4. Clustering for each combo of including/excluding uncertain edges

Creation: 2) Creating All Possible Med-Schemas

- Algorithm
- 1. Remove all infrequent attributes
- 2. Find *similarity* between every pair of attributes and construct a weighted graph
- 3. For each edge
 - (weight $\geq \tau + \epsilon$) \rightarrow retain
 - (weight $< \tau \epsilon$) \rightarrow drop
 - $(T-\epsilon \le weight < T+\epsilon) \rightarrow$ uncertain edge

(e.g.,
$$\tau$$
 =.6, ϵ = .2)

4. Clustering for each combo of including/excluding uncertain edges

Creation: 2) Creating All Possible Med-Schemas

- Algorithm
- 1. Remove all infrequent attributes
- 2. Find *similarity* between every pair of attributes and construct a weighted graph
- 3. For each edge
 - (weight ≥ τ+ε) → retain
 - (weight $< \tau \epsilon$) \rightarrow drop
 - (τ-ε ≤ weight < τ+ε) → uncertain edge

(e.g.,
$$\tau$$
 =.6, ϵ = .2)

 Clustering for each combo of including/excluding uncertain edges

Creation: 2) Creating All Possible Med-Schemas

- Algorithm
- 1. Remove all infrequent attributes
- 2. Find *similarity* between every pair of attributes and construct a weighted graph
- 3. For each edge
 - (weight $\geq \tau + \epsilon$) \rightarrow retain
 - (weight $< \tau \epsilon$) \rightarrow drop
 - $(T-\epsilon \le weight < T+\epsilon) \rightarrow$ uncertain edge

(e.g.,
$$\tau$$
 =.6, ϵ = .2)

4. Clustering for each combo of including/excluding uncertain edges

Creation: 2) Creating All Possible Med-Schemas

- Algorithm
- 1. Remove all infrequent attributes
- 2. Find *similarity* between every pair of attributes and construct a weighted graph
- 3. For each edge
 - (weight ≥ τ+ε) → retain
 - (weight $< \tau \epsilon$) \rightarrow drop
 - (τ-ε ≤ weight < τ+ε) → uncertain edge

(e.g.,
$$\tau$$
 =.6, ϵ = .2)

4. Clustering for each combo of including/excluding uncertain edges

Creation: 2) Creating All Possible Med-Schemas

- Algorithm
- 1. Remove all infrequent attributes
- 2. Find *similarity* between every pair of attributes and construct a weighted graph
- 3. For each edge
 - (weight $\geq \tau + \epsilon$) \rightarrow retain
 - (weight $< \tau \epsilon$) \rightarrow drop
 - (τ-ε ≤ weight < τ+ε) → uncertain edge

(e.g.,
$$\tau$$
 =.6, ϵ = .2)

4. Clustering for each combo of including/excluding uncertain edges

Creation: 3) Computing Probabilities

 Mediated schema M and source S are consistent if no two attributes of S are grouped into same cluster in M

Creation: 3) Computing Probabilities

 Assign probabilities to each M proportional to the number of sources it is consistent with.

