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Outline

v Dataspaces: why? What are they?
— Examples and motivation

» Dataspace techniques:
v’ Locating and understanding data sources
— Creating mappings and mediated schemas
— Pay-as-you-go: improving with time
— Querying dataspaces

* Research challenges on specific dataspaces:

— Science, the desktop, the Web
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Sub-Outline

What are schema matches and
mappings?

— Why is it so hard to create them?
Automatic techniques for creating them
Probabilistic schema mappings
Probabilistic mediated schemas

Trails: mapping hints
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Why is it so Hard?

» Schemas were developed in different
contexts for different purposes

» Schemas never fully capture their intended
meaning:
— They’re just symbols and structures.
— Descriptions are:
» Often missing,

* In plain text, or wrong, or,
* Don’t capture all the semantics

Schema Mapping Overview

» Step 1: schema matching:

— Generate correspondences between
elements of the two schemas

— Easier to elicit from designers

— May actually be all that’s needed
» Step 2: create mappings:

— Decide on joins, unions, filters, ...

User in the loop in both steps

See Chapter 5 of upcoming book




Sub-Outline

v'"What are schema matches and
mappings?
v'Why is it so hard to create them?
« Automatic techniques for creating them
» Probabilistic schema mappings
» Probabilistic mediated schemas
* Trails: mapping hints

Schema Matching overview

* One trick won’t do it all
* Hence:
— Consider several base matchers
— And then combine them
» Exploit domain constraints when possible
» We focus on 1-1 matching here
+ [See Survey by Rahm & Bernstein, 2001]

9/12/2008



Schema Matching
Architecture

Match
selector

1

Constraint
enforcer

i

Combiner

/\

Matcher 1 Matcher n

Basic Matchers

« Schema level:
— Name, description, data type,
— Constraints (keys, foreign keys, is-a)
— Schema structure
* Instance level:
— Look for common patterns in the data
— Often more meaningful than the schema

9/12/2008



Example: Edit Distance

Levenshtein Distance:
Number of operations needed to transform
one name to the other.

edit_distance(s,s,)

dsim(s,s,) =1-
edSim(s,,s,) max(length(s,),length(s,))

edSim(discountPrice, discountedPrice)?

Instance-Based Matchers

* Formatting patterns in the data can reveal

type:
— E.g., dates, phone numbers, prices, addresses,
names, ...

* What other attribute names were used
elsewhere for such values?
— Additional clues to name matcher

« Consider similarity in values & type between
two columns
— E.g., house price versus # of rooms

9/12/2008



Sub-Outline

v'"What are schema matches and
mappings?
v'Why is it so hard to create them?
v’ Automatic techniques for creating them
» Probabilistic schema mappings
» Probabilistic mediated schemas

* Trails: mapping hints

Probabilistic Schema Mappings

 In a dataspace, we may rely on
automatically created schema mappings
--> uncertainty

* How do we model uncertain mappings?

* How do we answer queries in their
presence?

9/12/2008



Probabilistic Mappings

[Dong, H., Yu, VLDB 2007]

* S=(pname, email-addr, home-addr, office-addr)

* T=(name, mailing-addr)

Possible Mapping Probability
{(pname,name),(home-addr, mailing-addr)} 0.5
{(pname,name),(office-addr, mailing-addr)} 0.4
{(pname,name),(email-addr, mailing-addr)} 0.1

Semantics? by table or by tuple?

By-Table v.s. By-Tuple Semantics

Possible Mapping Probability
{(pname,name),(home-addr, mailing-addr)} 0.5
{(pname,name),(office-addr, mailing-addr)} 0.4

{(pname,name),(email-addr, mailing-addr)}-

"\ 0.1

\

pname email-addr | home-addr | officd-addr
Ds= Alice \L’Qe@ Mountain View Sum}yvale
Bob bom Sunnyvale Sunn)\rale
name | mailing-addr :ame mailing-addr | | name m;iling-addr
Dt= | Alice | Mountain View | | Alice | Sunnyvale Alice alice@
Bob Sunnyvale Bob Sunnyvale Bob bob@
Pr(m,)=0.5 Pr(m,)=0.4 Pr(m;)=0.1
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By-Table v.s. By-Tuple Semantics

Possible Mapping Probability
{(pname,name),(home-addr, mailing-addr)} 0.5
{(pname,name),(office-addr, mailing-addr)} 0.4
{(pname,name),(email-addr, mailing-addr)} 0.1

pname | email-addr home-addr office-addr

B Alice alice@ Mountain View | Sunnyvale

Bob bob@ Sunnyvale Sunnyvale

name | mailing-addr name | mailing-addr name | mailing-addr

HAlice | Mountain View Alice Sunnyvale Alice alice@
M Bob bob@ Bob bob@ Bob bob@
Pr(<m,,m;>)=0.05

Pr(<m,,m;>)=0.04 Pr(<m;,m;>)=0.01

Complexity of Query Answering

By-table By-tuple
Data Complexity PTIME #P-complete
Mapping Complexity PTIME PTIME /\

é Works for Results extend
compressed to more PTIME for
representations complex important
of mappings mapping special cases
\_ too. languages. Y,
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Sub-Outline

v'"What are schema matches and
mappings?
v'Why is it so hard to create them?
v’ Automatic techniques for creating them
v'Probabilistic schema mappings
 Probabilistic mediated schemas
* Trails: mapping hints

Creating the Mediated Schema

[Das Sarma, Dong, H., SIGMOD 2008]

» Mediated schema creation: up front
effort.
» Can we create it automatically?

— If we can, then we can completely
bootstrap data integration.

 Probabilistic mediated schemas:
— manage the uncertainty involved.

9/12/2008
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Example Mediated Schema

{name, ‘ {email} {phone-num, ‘ {address, ]
person-name} phone mailing-addr}
T~

—~=_ O N =
Med's Gamye, e, phone 2350

>0

~
S1(name, email, phone-num, addres{ 52(perso}name,phone,mailing-addr)

m A mediated schema is a clustering of a subset
of the set of all attributes appearing in source
schemas.

21

Why Probabilistic Mediated Schema?

Med1 ({name}, {phone, hPhone, oPhone}, {address, hAddr, oAddr})

S1(name, hPhone, oPhone, hAddr, oAddr) S2(name,phone,address)

Q: SELECT name, hPhone, oPhone FROM Med 2

9/12/2008
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Why Probabilistic Mediated Schema?

Med1 ({name}, {phone, hPhone, oPhone}, {address, hAddr, oAddr})

Med2 ({name}, {phone, hPhone}, {oPhone}, {address, oAddr}, {hAddr})
i ¥l

L
S1(name, hPhone, oPhone, hAddr, oAc{dr)

S2(name,phone,address)

Q: SELECT name, phone, address FROM Med

Why Probabilistic Mediated Schema?

Med1 ({name}, {phone, hPhone, oPhone}, {address, hAddr, oAddr})

Med2 ({name}, {phone, hPhone}, {oPhone}, {address, oAddr}, {hAddr})

Med3 ({name}, {phone, hPhone}, {oPhone}, {address, hAddr}, {oAddr})
Vi ya

7 7
S1(name, hPhone, oPhone, hAddr, oAddr)

S2(name,phone,address)

Q: SELECT name, phone, address FROM Med

24
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Why Probabilistic Mediated Schema?

Med1 ({name}, {phone, hPhone, oPhone}, {address, hAddr, oAddr})

Med2 ({name}, {phone, hPhone}, {oPhone}, {address, oAddr}, {hAddr})

Med3 ({name}, {phone, hPhone}, {oPhone}, {address, hAddr}, {oAddr})

Med4 ({name}, {phone, oPhone}, {hPhone}, {address, oAddr}, {hAddr})
i 4

L] 7
S1(name, hPhone, oPhone, hAddr, oAddr)

S2(name,phone,address)

Q: SELECT name, phone, address FROM Med

25

Why Probabilistic Mediated Schema?

Med1 ({name}, {phone, hPhone, oPhone}, {address, hAddr, oAddr})

Med2 ({name}, {phone, hPhone}, {oPhone}, {address, oAddr}, {hAddr})

Med3 ({name}, {phone, hPhone}, {oPhone}, {address, hAddr}, {oAddr})

Med4 ({name}, {phone, oPhone}, {hPhone}, {address, oAddr}, {hAddr})

Med5 ({name}, {phone}, {hPhone}, {oPhone}, {address}, {hAddr}, {oAddr})
2z z

_

7 7
S1(name, hPhone, oPhone, hAddr, oAddr)

S2(name,phone,address)

Q: SELECT name, phone, address FROM Med

9/12/2008
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Why Probabilistic Mediated Schema?

Med1 ({name}, {phone, hPhone, oPhone}, {address, hAddr, oAddr})

Med2 ({name}, {phone, hPhone}, {oPhone}, {address, oAddr}, {hAddr})

Med3 ({name}, {phone, hPhone}, {oPhone}, {address, hAddr}, {oAddr})

Med4 ({name}, {phone, oPhone}, {hPhone}, {address, oAddr}, {hAddr})

Med5 ({name}, {phone}, {hPhone}, {oPhone}, {address}, {hAddr}, {oAddr})
Vi pa

/

S1(name, hPhone, oPhone, hAddr, oAddr)

S2(name,phone,address)

Q: SELECT name, phone, address FROM Med

27

Probabilistic Mediated Schema

Med3 ({name}, {phone, hPhone}, {oPhone}, {address, hAddr}, {oAddr})

Med4 ({name}, {phone, oPhone}, {hPhone}, {address, oAddr}, {hAddr})

S1(name, hPhone, oPhone, hAddr, oAddr)

S2(name,phone,address)

28

9/12/2008
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Probabilistic Mediated Schema

* A p-med-schema is a set
M={(M,Pr(M,)), ... (M,Pr(M,))} where
* M;is a med-schema; i#j => M# M,
* Pr(M)e(0,1]; ZPr(M,) =1

29

P-Mappings w.r.t. P-Med-Schema

Med3 (rlame, hPP,7P,7AA, A) Med3 (name, 7>P, P, hAA, @A)

S1(name, hP, oP, hA, 0A) S1(name, hP, oP, hA, 0A)
Pr=.64 Pr=.16

Med3 (rame,h}P,(P, 7A7A) Med3 (name, PSP,(P,SAXA)

S1(name, hP, oP, hA, 0A) S1(name, hP, oP, hA, 0A)
Pr=.16 Pr=.04

Med4 (name, oPP, hP, 0AA, hA) Med4 (name, 7>P,/P, 0AA, hA)

S1(name, hP, oP, hA, 0A) S1(name, hP, oP, hA, 0A)
Pr=.64 Pr=.16

Med4 (name, OS?W'?A}A) Med4 (name, 7>P,/P,7AA7A)

S1(name, hP, oP, hA, 0A) S1(name, hP, oP, hA, 0A)
Pr=.16 Pr=.04

15



Bootstrapping Data Integration

» Need to choose a mapping based on
the correspondences:
— One that minimizes entropy

» Consolidate probabilistic med schemas
into one -- for the user.

» Between 0.85 and 0.95 P/R for queries
on collections of 50-800 tables from the
Web.

Sub-Outline

v'"What are schema matches and
mappings?
v'"Why is it so hard to create them?
v’ Automatic techniques for creating them
v'Probabilistic schema mappings
v'Probabilistic mediated schemas
* Trails: mapping hints

9/12/2008
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iTrails: Add Integration Hints Incrementally
[Vas Salles et al., VLDB 06, 07]

Step 1: Provide a search service over all the data
— Use a general graph data model (see VLDB 2006)
— Works for unstructured documents, XML, and relations

Step 2: Add integration semantics via hints (irails) on
top of the graph
— Works across data sources, not only between sources

Step 3: If more semantics needed, go back to step 2

Impact:
— Smooth transition between search and data integration
— Semantics added incrementally improve precision / recall

Defining Trails

« Basic form of a Trail

Queries: NEXI-like keyword and

path expressions
.C.] eﬁéi.CRl

* Intuition: When | query for Q, [.C,], you should also
query for Qg [.Cgl

9/12/2008
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Trail Examples:
Global Warming Zurich

\

Temperatures

sllehbal wernlns wuelch Trail for Implicit Meaning:

“When | query for global
warming, you should also
query for Temperature data
above 10 degrees”

date | city [region |celsius

“WWMMWWW

25-Sep| Zu
26-Sep Zurcn] 2 | 0]

[2i-sepl o | 8E | 20 |

global warming —
//Temperatures/*[celsius > 10]

« Trail for an Entity: “When |
query for zurich, you
should also query for
references of zurich as a
region”

[zurich — //*[region = “ZH"] }

Trail Example: D

train home

\ .

ZVV Reiseplaner -{:
Timetakle Switzerland
+ door te door within canton Zurich (ZH)
From: StationiSiop w .
To: SttonEiop saimann rigiblich
Walt): Statontitop
Crate: 5a, 15,0807 [o#][ Calena |
Tirr: 1504

G Deparars ) Arival

eep-Web Bookmarks

Trail for a Bookmark: “When |
query for train home, you should
also query for the TrainCompany’s
website with origin at ETH Uni
and destination at Seilbahn
Rigiblick”

| Search connection || How sy | More |
\\‘ [tr

ain home -
//trainCompany.com//* [origin="ETH Uni”
and dest =“Seilbahn Rigiblick”]

Detailed view
Station/Stop Date Time Platform Products Comments
Zirich, ETH/Universititespital EWEIN 15.00.07  dep 1905 Trm g Trm Direction:
Ziirich, Seilbahn Rigiklick BN KN arr 19:08 £ Trm 9 Zidtich, Hirzenbach

Duration: 0:03; runs Sa
Hint: Departureisrtival replaced by an equivalent station
I Tariff level” Q,Zunes'. 10, Short distance

9/12/2008
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Trail Examples:
Schema Equivalences

» Trail for schema match on names:
“When | query for
Employee Employee.empName, you should also
| emp|D| empName | salary ‘ query for Person.name”

//Employee//*.tuple.empName —
Person //Person//*.tuple.name

J

| SSN | name |age|income

« Trail for schema match on salaries:
“When | query for Employee.salary,
you should also query for
Person.income”

//Employee//*.tuple.salary —
//Person//*.tuple.income

1

More on Trails

* Creation:

— Given by the user explicitly or by relevance
feedback.

— (Semi-)Automatically: information extraction,
schema matching, user communities, ontologies.

» Uncertainty on trails: some paths are better
than others.

* Query reformulation: avoid cycles. (see
paper)

9/12/2008
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Outline

v Dataspaces: why? What are they?
— Examples and motivation
» Dataspace techniques:
v" Locating and understanding data sources
v’ Creating mappings and mediated schemas
— Pay-as-you-go: improving with time
— Querying dataspaces
* Research challenges on specific dataspaces:
— Science, the desktop, the Web

Getting the Red Curve

Benefit Dataspaces pomoees

Data integration solutions

Investment (time, cost)

9/12/2008
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Reusing Human Attention

* Principle:
= User action = statement of semantic relationship
» Leverage actions to infer other semantic relationships

* Examples
— Providing a semantic mapping
* Infer other mappings
— Writing a query
 Infer content of sources, relationships between sources
— Creating a “digital workspace”
* Infer “relatedness” of documents/sources
* Infer co-reference between objects in the dataspace
— Annotating, cutting & pasting, browsing among docs

« ESP [von Ahn], mass collaboration [Doan+], active
learning for record matching [Sarawagi et al.]

Learning Schema Mappings
[Doan et al., 2001]

Mediated schema

AN

+ Classifiers for mediated schema
» Training examples: manually created schema matches

» Technique: multi-strategy learning. Use different learners
and combine their predictions.

» Used in Transformic Inc. to create thousands of
mappings.

21



Soliciting User Feedback

[Jeffrey, Franklin, H., SIGMOD 2008]

 After bootstrapping, we need help from
users to improve.
— Reference reconciliation
— Schema matches
— Extractions from text

» What questions should we ask the
users?

The Most Beneficial Match

Decision theory to the rescue!

—->Value of Perfect Information (VPI)

“What is the benefit of resolving an unknown?”

Intuition:

Benefit(match m;) = Utility(m; confirmed)(p yeq) +

Utility(m; disconfirmed)(1— Py ) —

Utility (without asking)

9/12/2008
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Utility of a Dataspace

* Focus on queries!

« 2 components:
— Result quality
— Query importance

U(D,M)= > r(Q,D,M)w,

(Qi,w;)eW
LA )

Look at allQuery resultQuery
queries in tlyuality (eighportance
workloagrecision/recall)

Challenges

» How to estimate benefit without computing all
queries?

» Don’t want to check all possible resulting
dataspaces when a match is confirmed.

» Result: much faster dataspace improvement
— Experiments on GoogleBase data.

9/12/2008
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Outline

v Dataspaces: why? What are they?
— Examples and motivation
» Dataspace techniques:
v" Locating and understanding data sources
v’ Creating mappings and mediated schemas
v’ Pay-as-you-go: improving with time
— Querying dataspaces
* Research challenges on specific dataspaces:
— Science, the desktop, the Web

Looking for data
management
problems

in the rainforest in
Costa Rica

9/12/2008
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Cutting Off a Leg

I Createdl a Row in a Database!

9/12/2008
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They Want Easy Sharing and Update

GUID | species | I Bar-code Upload
rules

Download
rules

They Disagree on Data!

-------
GUID | species | | Bar-code Upload
rules

Download
rules

[Guelph

26



Querying Dataspaces

« We'll talk about the ‘how’ in a moment, but
let’s set expectations first.
« Recall that uncertainty is everywhere:
— Data, mappings, query formulation
* Hence, results need:
— To be ranked
— Come with their provenance & explanation
« See tutorial by Tan & Buneman, SIGMOD 2007.
— They won'’t be sets of tuples necessarily.

Query Mechanisms

« Keyword search over structured data

— BANKS (Mumbai), Xrank (Cornell), Discover
(Hristidis and Papakonstantinou), Naga (Kasneci
et al.)

» Keywords as a starting point:
— Find the relevant data source and reformulate the
query
+ Examples below

— Find appropriate structured queries over multiple
sources

« System Q

9/12/2008

27



9/12/2008

Search - Mozilla Fi
Fle Edit View Go Bookmarks Tools Help
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|| Customize Links | | Free Hotmail | | Windows Windows B Crossing the Structur. .. »
Google - Chedk ~ »
o
& Search =

GOUSIG _Toyota Corolla Palo alto j=-

Web Results 1 - 10 of about 70,200 for toyota corella palo alto. (0.64 seconds)
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Altavista
Refine your search for toyota corolla palo alto Sponsared Links
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|pa oale H oy me = | Toyota Madels on Sale!

|his|:ma(ian[ Search vehicles ] Find The Latest Prices, Reviews

www_Toyota edmunds_com

Fogster | Toyota 1996 Corolla - $3900 (Palo Alto) Palo alto toyota
Taking the power of newspaper classifieds and the reach of the Local dealer in Sunnyvale. We offer
Internet, Fogster.com is a new approach to classifieds both online and  online specials, ask for a quote.
in print. www.Toyota-Sunnyvale.com
www fogster.com/listing.php?id=79414 - 10k - San Francisco-Oakland-San Jose, CA
Cached - Similar pages - Filter B

Trn Tariaks Caealla D
Done @ Open Notebook Q

da palo alto - Google Search - Mozilla Firefox

Fle Edit View Go Bookmarks Tools Help

<:E| A L’L;’ - %‘ ‘:‘ @ ‘ http:/fwww.google.com/search?q=honda +palo +altodstart=( Vl @ Go ‘@,honda palo alto

[ customize Links [ ] Free Hotmail [ ] Windows Marketplace [ | Windows Media | | Windows [Z) Crossing the Structur... 3
Google - [honda palo alto | Gl search ~ g8 FR0eRah AR cpeq - 9 Autolink
Signin

Google -

Web 7000 for honda palo alto. (0.23 seconds) —

Honda Palo Alto Sponsored Links Sponsored Links

www.AndersonDirect.com/ Low prices, no hassle, great deals at Anderson
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nstant Price Quote Directly From

Honda of Stevens Creek Anderson Honda - (388) 398-4309

www_hondaofstevenscreek com Qur Prices & Service Can't Be Beat. Your  Honda.Quote-Form.com

Discount Honda Store & More!

Larmry's AutoWorks

Local results for honda near Palo Alto, CA When you want it right, you go to
= Anderson Honda - 1.4 miles NE - 1766 Embarcadero Rd, Palo Alto. the experts. Larry's knows Hondas.
“J 94303 - (650) 856-6000 www_autoworks_com
Honda Senice - 0.9 miles W - 930 Emerson St, Palo Alto, 94301 - San Francisco-Oakland-San Jose, CA
(650) 327-3061
Honda Small Car Shop - 1.0 miles W - 111 Homer Ave, Palo Alto, Palo Alto Honda
94301 - (650) 329-0666 Radical Approach to New Car Buying.

Competing Bids from Dealers in Area
Anderson Honda - New & Certified Used Honda Cars Dealerat  DealersCompeteYouWin.com
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Done ] Open Notebook | (=)

v
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System Q

[Talukdar et al., VLDB 2008]

Each node is a
Q—N ~“|database/table.
O O g
Edges represent |
associations
e.g. cross-ref/mapping

The Big Question

Query Keywords

Protein, Gene,

How do we point a user to the right data when multiple databases,
tables are involved and not all databases and tables are of equal
value/relevance/quality/authority ?

Disease = “AIDS”

Learn the Queries to Integrate Data

Query Keywords
a, e, f

Schema Graph

9/12/2008
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Q-System Steps (contd.)

Updated Edge Cost

Q-System Steps (contd.)

Query Keywords
a, e, f

New Rank = 2
Old Rank = 1

New Rank =1
Old Rank = 2

9/12/2008
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Keyword Search across Multiple Databases
[Kite: Sayyadiyan et al. ICDE 07]

Complaints o ———mmm T T T T T T T e Employees

| tid id emp-name comments | | tid empid name |

ul (c124|(Michael Smith
u2 |c124 [ John

Repair didn’t work vl [e23 Mike D. Smith
Deferred work to v2 |el4d John Brown

John Smith v3 (e37 Jack Lucas
Customers Groups
tid custid name  contact addr | tid eid reports-to |
tl (c124| Cisco  Michael Jones x1 e23 e37
t2 |c533| IBM  David Long X2 el €37

t3 (€333) MSR Joan Brown

Query: [Cisco Jack Lucas]

[ v
|t1 c124 Cisco Michael Jones ... | | u1l c124 Michael Smith Repair didn’t work |

v

I
_ |v1 e23 Mike D. Smith| |x1 e23 e37
T
across databases B B el LU

= |IR-style data integration

Query Processing Principles

Query: Peter Buneman address

First name: Peter
Middle name:

Last name: Buneman
Address: ?

9/12/2008
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Query processing as fact gathering

First name: Peter
Middle name:

Last name: Buneman
Address: ?

Keyword query:
Peter Buneman

=
— Companies II
address II StreetAdr ;II addre
ty, zip

City required
E 4

w
e /(Lpl) ‘e R

i

(tnps)

o

_9: il

’p2

\v

M

=N

Outline

v Introduction
v Dataspace principles through data integration

» Research challenges on specific dataspaces:
— Dataspaces on the Web,
— in Science, and
— for Personal Information Management

9/12/2008
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fle Edt Wiew Hgtory @ockmarks Teals Help
@ - - @ | hitpsjpwww.anchantadiaarning.cormhistoryjus prasist sham R0
As 0 thank-you banus, site members have socess 1o n banner-adfree version of the site, with printfriendly pages.
(Already a member? Click here.}

Enchantedl caming com i

US History

US Geagraphy
1] K | L | M N | o | P | 0 ERESSESTHSUSEY w

Explorers of the US tventors  |[RSR US Symboly US States

Fnchanted] earningcam

The Presidents of the United States of America

Prosident’s Day Activilics In the order i which they served Alphabetical order | Short table of Data

it
=
I

Abruham Linceln
The President and Vice-President are elected every four years. They must be at least 35 years of age, they must be native-hom citizens of the United States, and they must have

been residents of the U8, for at least 14 years, (Also, 2 person canned be elected 1o a third term as President. )

President Farty Term as President Vice-Fresident
1. George Washingion (1732-1799) MNone, Federalist 1789-1797 Johin Adams
2. John Adams (1733-1826) Federalist 17971801

on {1 T43-1826) Democratic-Republican 18011808 Aaron Burr, George Clinson

3. Thomas Jefl

4. Jumes Madison (1751-1836) Demecrats-Hepablican 18091817 Geonge Clinon, Elbndge Gemy

3. James Monsoe (1758-1831) Dremocratx-Republican 1817-1825 Diniel Tompkins

6. John Quiney Adams (1767-1848) Dremecratie-Republican 1825-1829 Jobn Calhoun

7. Amdrew Jackson {1767-1845) Dremnocrat 18291837 Johin Culhoun, Martes vam Buren

& Martin van Buren (1 TR2-1862) Democrat 1837-1841 Richard Johnson

. William H. Harrison { 1841} Whig 1841 Jobn Tyler

10, Jaha Tyler (1T90-1862) Whig 18411845

1. James K. Polk {1793-1849) Uemeery 15341549 Ciprgee Dallas

12, Fachary Taylor {1784- 1850) .

. s s 7 See next session -- Cafarella et al
14, Franklin Pierce { 1804- 1 86%) 3
15, James Buchanaa (1791-1868) Democrat 1857-1861 John Breckinridge

Dataspaces on the Web

* The Deep Web (yesterday, Madhavan et al.):
— Millions of forms.
* Main challenges:
— The domain of everything
— The context of the data carries semantics
— Need to live with the rest of web data
* Opportunities:

— Scale: stuff you can do with millions of schemas,
forms
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Issues in Science Dataspaces

» Concepts are still gelling, or have
multiple abstractions
E.g., Gene
* Coding region of a chromosome
* Particular transcription and splicing of a region
* Particular variant of the region
* Product (usu. protein) coded by the region
* Whether they should be treated the same
can depend on task or even query

* Makes schemas complex

Science DS Issues, Cont.

Identification is hard

* No common identification scheme yet

Hsp10, HSP10, CPN10, Yor020p, ch10_yeast
[Jagadish, Chapman+ SIGMOD 07]

« Comparisons are on complex structures
Sequence, molecule, 3-D structure

« Slight variants are different entities in rw
Gene homologs

On-the-fly matching difficult
Want to reuse manual work
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Scientific DS Issues, cont.

Complex schemas make query hard

Michigan Molecular Interactions (MiMlI)
[Jayapandian, Chapman+ Nucleic Acids Res. 2007]

— Use abstracted schema for overview (and
now query)

— Multiple query interfaces: form, XQuery,
keyword, MQuery (graphical)

But — “same” query gives different answers in
different interfaces

The Other “DataSpace”

» What’s the minimum infrastructure for
initial transformation, cleaning and
exploratory analysis?

» Data sets often too big to replicate, but
even fast channels are hard to exploit

for on-the-fly combination
[Grossman, Mazzucco IEEE Comp in Sci & Eng 2002]
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Universal Keys

» Devise one or more domain-specific
universal keys

* Treat data as distributed columns
associated with one or more UKs

» Fast transfer and merge-join on keys;
templated transform and display ops

Later version called Sector with more

parallelism
[Grossman, U Penn Il Workshop 2006]

Supporting Analysis

Scenario: Domain experts who are
unfamiliar with schema, need to make

equivalence judgments
— None, <1 pack, 1-2packs, >2 packs

— Never smoked, smoker, quit
 GUAVA: GUI as View Apparatus
Query through the data-entry screen
» MultiClass: Save and reuse domain

mapping decisions
[Terwilliger, Delcambre+ EDBT Workshops 2006]
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Other Science DS Work

* Multiple Genomes and Meta-genomes
[Markowitz U Penn |l Workshop 06]
Have “coarse annotation” in some
components while refining annotation
(perhaps even manually) in others

» Science dataspaces on the Grid
[Elsayed, Brezany+ DEXA 2006]

» Ontologies in science dataspaces
[Ning, Wang ICPCA 2007]

Personal DS Issues

Many territorial entities in your dataspace
— Device boundaries: laptop vs. PDA
— Document boundaries: directory vs. cells
— Server boundaries: files vs. email

Desktop search doesn’t solve it all.
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Issue: Reconciling References

» References might have small numbers
of attributes

» Not a lot of data to train on or analyze
» References evolve

— People move

— Documents go through versions (think
about your interview talk)

Issue: One-time Query

« Standard information integration often
starts by listing frequent queries that are
anticipated

* In a personal DS, you might want to ask
a query once over a particular
combination of sources

“What exam questions do | have that weren't
in the HW, weren’t on the practice exam,
weren’t used in class, aren’t in the back of
the book, aren’t examples in the book?”
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SEMEX: Semantic Exploration

« Extract objects and relationships
automatically and cast into a personal
information model [pong, Halevy CIDR 2005]

* Reference reconciliation is critical
- First: Mike, Last:Carey, Loc: IBM
— First: Michael, Last:Carey

— Last: Carey, Email: carevy@ibm.com

- Email: carey@ibm.com, Loc: Almaden

Reference Merging

e Combine references, allow multivalues

First: Mike, Last: Carey, Loc: IBM
— First: {Mike, Michael},
////7 Last: Carey, Loc: IBM
First: Michael, Last: Carey
First: {Mike, Michael}, Last: Carey,
Email: carey@ibm.com
Loc: {IBM, Almaden}

Last: Carey, email: carey@ibm.coi{//ﬂ
—— Last: Carey, email: cdrey@ibm.com

Loc: Almaden
Email: carey@ibm.com, Loc: Almaden
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Evolving Objects

» Do fine-grained reconciliation
» Look for evidence to build chains that
represent versions of objects.

Emails for Carey from ibm.com don’t overlap
in time with emails for Carey from bea.com

IMeMex

* You saw this previously in iTrails
[Dittrich, Vaz Salles VLDB 06]

* Try to over come the document
boundary

Why is the file-system directory hierarchy
different than the element hierarchy in an
XML document?

* iMeMex Data Model (iDM)
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| Projects

|PIM

L x| Vidb 2006.tex

L

oLap

Courtesy Jens Dittrich and Marcos Vaz Salles

IDM Example

(Projects) Resource Views

PIM

\documentclass{vidb}
\title{iDM: A Unified ...}

\abstract{Personal Information...}
\begin{document}
\section{Introduction}

Personal Information...

\subsection{The Problem}
\label{sec:theproblem}

.. concepts in Section~\ref{sec:preliminaries} ..
\section{Preliminaries}
\label{sec:preliminaries}

As mentioned in Section~\ref{sec:theproblem} ..
\end{document}

Ask Us Questions ...

... or straighten us out
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Backup Slides

And Extras

Query Answering Semantics

* Input:
* Source S, query Q
* P-med-schema M ={(M,Pr(M,)), ..., (M,Pr(M)))}
* P-mappings pM = {pM(M,), ..., pM(M)) }
e Output probability of tuple t:
* p=2Pr(t|M)* Pr(M,)

84
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Query Answering
S1
name hPhone oPhone hAddr oAddr
Alice 123-4567 | 765-4321 | 123, AAve. | 456, B Ave
Q
SELECT name, phone, address
FROM Med-S
Answers
Tuple Probability
(‘Alice’, “123-4567’, 123 A Ave.’) 0.34
(‘Alice’, 765-4327’, ‘456 B Ave.’) 0.34
(‘Alice’, 765-4327, ‘123 A Ave.’) 0.16
(‘Alice’, “123-4567’, ‘456 B Ave.’) 0.16

P-Med-Schema v.s. P-Mapping

Expressive Power of

Theorem 1. For one-to-many mappings:
(p-med-schema + p-mappings)
= (mediated schema + p-mapping)
> (p-med-schema + mappings)

Theorem 2. When restricted to one-to-one mappings:

(p-med-schema + p-mappings)
= (p-med-schema + mappings)
> (mediated schema + p-mapping)
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Creation: 1) Creating a Single Med-Schema

Input: Single-table source schemas S, ..., S,
Output: Single-table mediated schema M

Algorithm
Remove all infrequent attributes
Find similarity between every pair of attributes and

construct a weighted graph
Remove edges with @

weight below 1 (e.g., 1=.5)

email-address

Each connected com- 1
7~

ponent is a cluster 2
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Creation: 1) Creating a Single Med-Schema

Input: Single-table source schemas S,, ..., S,
Output: Single-table mediated schema M
Algorithm

Remove all infrequent attributes
Find similarity between every pair of attributes and

construct a weighted graph — I
@ address

Remove edges with NG

Each connected com- 1

ponent is a cluster

weight below T (e.g., 1=.5)
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Creation: 2) Creating All Possible Med-Schemas

« Algorithm
1. Remove all infrequent attributes

2. Find similarity between every pair of attributes and
construct a weighted graph

3. Foreach edge
* (weight = T+€) - retain

* (weight < 1-€) > drop
« (1-€ < weight < T+e) > @ =y
uncertain edge >t .
(e.g. T=6,e=.2) . 6
4. Clustering for each combo <2
of incrltuqmg(/jexcluding . @ @
uncertain edges .

Creation: 2) Creating All Possible Med-Schemas

« Algorithm
1. Remove all infrequent attributes

2. Find similarity between every pair of attributes and
construct a weighted graph

3. Foreach edge
* (weight = T+€) = retain
* (weight < 1-€) = drop
* (T-e < weight < 1+€) > @
uncertain edge 51
(e.g., 7=.6,€=.2) 1
4. Clustering for each combo

of including/excluding 5 @ @
uncertain edges

address

email-address
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Creation: 2) Creating All Possible Med-Schemas

« Algorithm
1. Remove all infrequent attributes

2. Find similarity between every pair of attributes and
construct a weighted graph

3. Foreach edge
* (weight = T+€) - retain

*  (weight < 1-€) > drop T I
* (1-e = weight < 1+¢) > @ @_6
uncertain edge = . -
1

4. Clustering for each combo —
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of including/excluding 52 @
uncertain edges .

Creation: 2) Creating All Possible Med-Schemas

« Algorithm
1. Remove all infrequent attributes

2. Find similarity between every pair of attributes and
construct a weighted graph

3. Foreach edge
* (weight = T+€) = retain

* (weight < 1-€) = drop l
* (1-e = weight < T+€) 2 @ @.6
uncertain edge = —

(e.9.,7=.6,e=.2) 1

4. Clustering for each combo —

of including/excluding . @
uncertain edges
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Creation: 2) Creating All Possible Med-Schemas

« Algorithm
1. Remove all infrequent attributes

2. Find similarity between every pair of attributes and
construct a weighted graph

3. Foreach edge
* (weight = T+€) - retain

*  (weight < 1-€) > drop T I
« (1-€ < weight < T+e) > @ LRl

uncertain edge 51 ,@
emall-addaress
(e.g9.,7=.6,e=.2) (B
4. Clustering for each combo —
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1
of including/excluding . @
uncertain edges
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Creation: 2) Creating All Possible Med-Schemas

« Algorithm
1. Remove all infrequent attributes

2. Find similarity between every pair of attributes and
construct a weighted graph

3. Foreach edge
* (weight = T+€) = retain

* (weight < 1-€) = drop [ l
* (T-e < weight < 1+€) > @ @ ‘
uncertain edge =
(e.g.,1=.6,e=.2) 1
4. Clustering for each combo —
of incrltuc_iing(/jexcluding 5 @
uncertain edges L,
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Creation: 3) Computing Probabilities

Mediated schema M and source S are

attributes of S are grouped into same cluster in M

Sl

X

52 Gamesiasd |
_ v

Sl

X
Sl R

L V4
v

if no two

Creation: 3) Computing Probabilities

Assign probabilities to each M proportional to the
number of sources it is consistent with.

Sl

Pr=1/6

@D ey |
Sl

2D Gomeatied |

Pr=1/3

Sl

Pr=1/6

Sl AN

Pr=1/3
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